

DATE:
TIME:
LOCATION:

Board of Building Standards

ELECTRICAL SAFETY INSPECTOR ADVISORY COMMITTEE REQUEST FOR RECOMMENDATIONS

Personnel Certification Applications

P-1 Furry, Mark ESI

Certification ID\# 8882
Current certifications- none, holds Electrical Contractor License
P-2 Hare, Bruce ESI
Certification ID\# 8891
Current certification- none, holds Electrical Contractor license.
P-3 Heard, Michael BI, ESI
Certification ID\# 8901
Current certifications- none, OCILB Electrical Contractor.
Staff notes-Recommend approval for ESI, have requested additional information on BI to separate commercial structural projects 8/11/22
Committee recommendations-
P-4 McClary, Jerry ESI
Certification ID\# 8888
Current certifications- None
P-5 Sanders, Cecil ESI
Certification ID\# 8880
Current certifications- none
P-6 Scott, Jeremy BI, ESI
Certification ID\# 8900
Current certifications- none
P-7 Wakefield, Alex ESI
Certifications ID\# 8905
Current certifications- None, Journeyman IBEW 25 years
P-8 Wilson, Aaron ESI, RBI
Certification ID\# 8904
Current certifications- none

P-9 Young, Trenden - ESI

Cert ID: 8879
Current Certifications: None
Staff Notes: Received in June after ESIAC meeting: please review electrical experience. ESIAC Recommendations:
Committee Recommendation:

Continuing Education Applications for Review

2020 NEC Calculations Webinar Part 1 (Matthews Electrical Services)
BO, MPE, EPE, MechPE, ESI, BI, MI, RBO, RPE, RBI, RMI, RIUI (4 hours)
Staff Notes: Recommend addition of NRIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:
ER-2 2020 NEC Calculations Webinar Part 2 (Matthews Electrical Services)
BO, MPE, EPE, MechPE, BI, MI, RBO, RPE, RBI, RMI, RIUI (4 hours)
Staff Notes: Add NRIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:
ER-3 2020 NEC Hazardous Locations Webinar (Matthews Electrical Services)
BI, MPE, EPE, MechPE, ESI, BI, MI, RBO, RPE, RBI, RMI, RIUI (4 hours)
Staff Notes: Add NRIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:
ER-4 2020 NEC Overview Webinar (Matthews Electrical Services)
BO, MPE, EPE, MechPE, ESI, BI, MI, RBO, RPE, RBI, RMI, RIUI (4 hours)
Staff Notes: Add NRIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:
ER-5 2020 NEC Review (International Association of Electrical Inspectors)
All certifications except plumbing and IU (30 hours in four 7.5 -hour sessions)
Staff Notes: Add NRIUI, RIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:
ER-6 Electrical Safety Webinar Based on 2020 NEC and NFPA 70E (Matthews Electrical Services)
BO, MPE, EPE, MechPE, ESI, BI, MI, RBO, RPE, RBI, RMI, RIUI (4 hours)
Staff Notes: Add NRIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:

File Attachments for Item:

P-1 Furry, Mark ESI
Certification ID\# 8882
Current certifications- none, holds Electrical Contractor License

Board of Building Standards

Last Name

Application for Interim Certification, Building Department Personnel
\qquad
First Name
BBS Certification ID

Section 1: Check Interim Certification(s) Being Requested

Building Official	Master Plans Examiner	Building Inspector	Electrical Safety Inspector	Fire Protection Inspector
Building Plans Examiner	Plumbing Plans Examiner	\square Mechanical Plans Examiner	Electrical Plans Examiner	Fire Protection Plans Examiner
	Plumbing Inspector	\square Mechanical Inspector	Non-Residential Industrial Unit Inspector	

Section 2: List Any Ohio License, Certificate, or Registration Held

 (Mark "T" If Trainee)| Description | Certificate Number | Date Received | |
| :---: | :---: | :--- | :--- |
| Architectural Registration | | | |
| P.E. Registration | | | |
| Res | Non-Res | | |
| \square | \square | Building Official Certification | |
| \square | \square | Plans Examiner Certification | |
| \square | \square | Building Inspector Certification | |
| \square | \square | Mechanical Inspector
 Certification | |
| Building Plans Examiner Certification | | | |
| Mechanical Plans Examiner Certification | | | |
| Fire Protection Plans Examiner Certification | | | |
| Electrical Plans Examiner Certification | | | |
| Plumbing Plans Examiner Certification | | | |
| Fire Protection Inspector Certification | | | |
| Electrical Safety Inspector Certification | | | |
| Plumbing Inspector Certification | | | |
| Fire Safety Inspector Certification | | | |
| Fire Protection System Designer Certification | | | |
| Medical Gas Piping Inspector Certification | | | |

ohio electrical Contractors license

EL * 46333
$3 / 15 / 11$

Board of Building Standards
FurRy
Last Name

Application for Interim Certification, Building Department Personnel
\qquad
MARK
First Name

Section 3: Employment/Education

Formal Education	Date Graduated
Bueyeds H14H 5CHOOL	$5 / 1982$
900 Perey 5 HeEET, PuCYRUS, oh 44620	
Related Vocational or Technical Training	Years' Experience
PONEER CTREER + TECH LENTER	$1 \frac{1}{2} Y / R$.
27 PYAN Ro, 5 HELOY, OH10 44875	
U.S. Military construction experience (MOS or other designation):	Years' Experience
N / A	
Place of Employment:	Years' Employed
ONE WAY CRECRIC LCC. (MY PUSINESS)	6/17-PRESEN7
H6G SHECNOOD DR EAST, NEWARK OH 4,3055	

Section 4: Applicants Requesting Medical Gas Inspector Certification

Attach proof of certification by an ASSE recognized third-party certifier in accordance with ASSE standard 6020.

Section 5: OBC Building Inspection Experience Performed for a BBS Certified Building Department

BBS Certified Building Department	BBS Certified Position/Title	Duties	Date of Service, Length of Time (MMM/DD $/ Y$)

Board of Building Standards
FORRY
Last Name

Application for Interim Certification, Building Department Personnel

MARK
First Name
$\overline{\text { BBS Certification ID }}$

Section 6: Electrical Safety Inspector (ESI) - Specific Experience Qualifications Applicants for Electrical Safety Inspector Only Must Complete This Item
Section 3783 of the Ohio Revised Code specifies that an applicant for a Certificate of Competency as an Electrical Safety Inspector must meet on of the following to qualify to take reguired examination. Please check the qualification that applies:

1. \quad Have been a journeyman electrician or equivalent for four years, two of which were as an electrician foreman, and have had two years' experience as a building department electrical inspector trainee;
2. \square Have been a journeyman electrician or equivalent for four years and have had three years' experience as a building department electrical inspector trainee;
3. \square Have had for four years' experience as a building department electrical inspector trainee;
4. V Have been a journeyman electrician or equivalent for six years;
5. $\square \mathrm{Am}$ a graduate electrical engineer and registered in the State of Ohio. Registration number:
6. Applicant authorizes all testing organizations including ICC to provide test results to the BBS.

Section 7: Experience (Do Not Substitute with Other Resumes).

Refer to Experience Requirements Listed in O.A.C. 4101:7-3-01 and O.R.C. 3783
Below, list the specific projects you worked on, and the specific work you performed, your typical duties for each project, and dates of this work. You must demonstrate that you have the required number of months (years) of actual, practical experience for the certification requested (see matrix).
Provide letters from certified inspectors, employers, or contractors verifying your experience. Submit copies of any certificates, diplomas, or licenses. Remove all personal information.
SEction 7 Cont.: EXPERIENCE

List Each Construction Project AND Specific Type of Work Performed	Name of Employer, Contact, Address, Telephone Number	Project Time: From_ To _ (MMNY)
Example: Children's Hospital, Toledo Structural steel work on addition - 38 NGUTICAL WAY \&uCAEtit LaNE O. (New buind sumate timinay duekned DESRLNED ELECTRICRL LAVOUT. TUSTAMED OUTSIDE RISER, POUWCD ALA EIRCUTS REQURED PEA LA YoUT, WETER BOX AND ELECTEMCAL BAX. DNUTALCDS GFCT AnD ARC BuKT - Rennerer fir code REquIAEMENO perrormed ofkculaments on LOADS FIRR PROAR BALRNCE. PCNFORMEO Gquev Lntious on dox fru code Rea. Home PER CODE. LOUTTML ZUSTRCLI DNO ENTNRF PLUTECT FDom ROUGH To FIN心 SY A Ysewf)	Homer Steel and Trade 125 Anytown Street My City, OH, 45454 (419) 555-1212 ONE-WAV ELETRC LLE (selfemploteo) 4CL SHERWOOD DRIVE E NEWARK, OH 49055 CuTTMER COMTBCT. $\angle N A+K E N W$ CHAN (614) 205-M799	July 2013-May 2014 (10 months) MAKCH 2022-TVLYZ022 (4montws)
Total Experience on This Page (In Months):		

Board of Building Standards

Last Name

Application for Interim Certification, Building Department Personnel
\qquad

* 1 DO HOLD AN OHIO ELECTVUCAL LICENSE (ELH46333) SINCE 2OII (SEE AMACHED COPH)
* I HAVE BEEN DOING ELECTRC IN THE FIELD 5INCE 2003. I STARTEO AS AN APPRENTICE AN NOW I AM AN EISCRTICAK CONTRACTOR. I HAVE SAENT 19 HEARS (225 MONTHS) DANL ELECTRIC INALL RESIDEATAL AND CONMERUAKSEKTINGS. I HAVE DONE TO AHNY CONTRUCBIN TABS 70 人NT.

Board of Building Standards

Lost Name

Application for Interim Certification, Building Department Personnel
\qquad
First Name

Section 8: Personal History

1. Have you ever been convicted of any felony, or any crime involving moral turpitude?

If you answered "Yes" please explain below:
2. Have you served in the U.S. armed services? (If No, skip question 3)
3. If YES, were you discharged under honorable conditions?

If you answered "No" please explain below:

N / A

Section 9: Certification

I certify the information contained in this application is true and complete, and I understand that providing false information may be grounds for not granting certification or for immediate termination of certification at any point in the future, if granted. I authorize the investigation of all statements contained herein and release all parties from all liability for any damage that may result from furnishing the same to Ohio Board of Building Standards. Falsification is a violation of section 2921.13 of the Ohio Revised Code and is punishable as a misdemeanor of the first degree.

Subscribed and duly sworn before me according to law, by the above named applicant this
 my Comm. Expires May 20, 2025

Department of Commerce

MARK A FURRY

This is YOUR license. Plan Approvals obtained with YOUR license and posting of YOUR license indicates that YOU and YOUR liability insurance are assuming all responsibility for any projects performed under this license.

File Attachments for Item:

P-2 Hare, Bruce ESI
Certification ID\# 8891
Current certification- none, holds Electrical Contractor license.

Application for Interim Certification, Butding Department Personnel

First Name

BBS Cortification 10

Section 1: Check Interim Certification(s) Being Requested

\square Res. Building Official	\square Res. Plans Examiner	\square Res. Building Inspector
X Res ESS	\square Res. Industrial Unit Inspector	\square Res. Mechanical Inspector

Section 2: List Any Ohio license, Certificate, or Registration Held (Mark "T" If Trainee)

Descriptlon	Certificate Number	Date Recelved	
Architectural Registration			
P.E. Registration			
Res	Non-Res		
\square	\square	Building Oticial Certification	
\square	\square	Plans Examiner Certification	
\square	\square	Building Inspector Certification	
\square	\square	Mechanical Inspector Certification	
Building Plans Examiner Certification			
Mechanical Plans Examiner Certification			
Fire Protection Plans Examiner Certification			
Electrical Plans Examiner Certification			
Plumbing Plans Examiner Certification			
Fire Protection Inspector Certification			
Electrical Safety Inspector Certification			
Plumbing Inspector Certification			
Fire Safety Inspector Certification			
Fire Protection System Designer Cortification			
Medical Gas Piping Inspector Certification			

Section 3: Employment/Education

| a. Formal EducationMuskingum Univesity Date Graduated
 Ohio University- MFA 1978
 b. Related Vocational or Technical Training 1980
 Years' Experience

 c. U.S. Military consifuction experience (Mos or other designation): Years' Experience

 d. Place of Employment:
 Hare Electric, Inc. |
| :--- | :---: |

Board of Bullding Standards Application for Interim Certification, Bulding Department Personnel
Hare

Last Name
$\frac{\text { Bruce }}{\text { First Name }} \quad \overline{\text { BBS Centication iD }}$

SECTION 5 CONT.: EXPERIENCE

List Each Construction Project AND Speclific Type of Work Performed	Name of Employer, Contact, Address, Totephone Number	Project Time: From To (MM/YY)
State of Ohio Electrician License \#19775 Worked as an electrician, owner and supervisor of employees from Jan 1, 1996 until present.	Hare Electric, Inc-4180 Wooster Road, Rocky River, Ohio 44116- P\# 440-570-0950	312 Months

Board of Building Standards
Hare
Hare

Last Namo

Application for Interim Centification, Bulding Department Persannel
Bruce
First Name

SECTION 5 CONT.: Experience

Hare
$\frac{\text { Bruce }}{\text { First Name }}$

Section 6: Personal History

1. Have you ever been convicted of any felony, or any crime involving moral turpitude? \square Yes X No:
2. If you answered "Yes" please explain below:
3. Have you served in the U.S. armed services? (If No, skip question 3)
4. If YES, were you discharged under honorable conditions? If you answered "No" please explain below:

| \square |
| :--- | :--- |
| |
| |

Section 7: Certification

I certify the information contained in this application is true and complete, and I understand that providing false information may be ground's for not granting certification or for immediate termination of certification at any polit in the future. if granted. I authorize the investigation of all statements contained herein and release all parties from all liability for any damage that may result from fumishing the same to Ohio Board of Building Standard's. Falsification is a violation of section 2921.13 of the Ohio Revised Code and is punishable as a misdemeanor of the first degree.

Signature of Applicant:

Subscribed and duly sworn before me according to law, by the above named applicant this day 22 of July in the year 20_22 at Rocky River County of Cuyglevga and
\qquad
Notary Public:
ANNABEL M LOPEZ
 Notary Public, Slate of Ohio My Comm. Expires 02/01/2025

HARE, BRUCE

Electrical
Sheryl Maxfield CONTRACTOR'S LICENSE

Ohio License \# 19775
Expiration Date: 03/31/2025
BRUCE HARE HARE ELECTRIC INC

OWNER

This is YOUR license. Plan Approvals obtained with YOUR license and posting of YOUR license indicates that YOU and YOUR liability insurance are assuming all responsibility for any projects performed under this license.
LICENSE MUST BE POSTED ON JOB SITE 3

Sheryl Maxfield
Director

Electrical

CONTRACTOR'S LICENSE BRUCE HARE HARE ELECTRIC INC OWNER

Ohio License\# 19775

Expiration Date: March 31, 2025

Carol A. Ross
Board Secretary

File Attachments for Item:

P-3 Heard, Michael BI, ESI
Certification ID\# 8901
Current certifications- none, OCILB Electrical Contractor.
Staff notes-Recommend approval for ESI, have requested additional information on BI to separate commercial structural projects 8/11/22

Committee recommendations-

Board of Building Standards

Last Name

Section 1: Check Interim Certification(s) Being Requested

Building Official	Master Plans Examiner	Building Inspector	Electrical Safety Inspector	Fire Protection Inspector
\square Building Plans	Plumbing Plans Examiner	Mechanical Plans Examiner	\square Electrical Plans	Fire Protection Plans Examiner
	\square Plumbing Inspector	\square Mechanical Inspector	[.] Non-Residential Industrial Unit Inspector	

Section 2: List Any Oho License, Certificate, or Registration Held

 (Mark "T" If Trainee)| Description | | | Certificate Number | Date Received |
| :---: | :---: | :---: | :---: | :---: |
| Architectural Registration | | | | |
| P.E. Registration | | | | |
| Res | Non-Res | | | |
| \square | \square | Building Official Certification | | |
| \square | \square | Plans Examiner Certification | | |
| \square | | Building Inspector Certification | | |
| \square | | Mechanical Inspector Certification | | |
| Building Plans Examiner Certification | | | | |
| Mechanical Plans Examiner Certification | | | | |
| Fire Protection Plans Examiner Certification | | | | |
| Electrical Plans Examiner Certification | | | | |
| Plumbing Plans Examiner Certification | | | | |
| Fire Protection Inspector Certification | | | | |
| Electrical Safety Inspector Certification | | | | |
| Plumbing Inspector Certification | | | | |
| Fire Safety Inspector Certification | | | | |
| Fire Protection System Designer Certification | | | | |
| Medical Gas Piping Inspector Certification | | | | |

Board of Suilding Standards
\qquad
Heard
last Name

Application for Interim Certification, Building Department Personnet
\qquad
First Name

SEction 3: Employment/Education

Formal Education 2022 Cectificate	Date Graduated
core classs Enclosed	01/2022
Related Vocational or Technical Training DVce a year	Years' Experience
Wenomha High Vocational Tech	3 yrs
U.S. Military construction experience (MOS or other designation):	Years' Experience
C15 Army	$3 y+5$
Place of Employment:	Years' Employed
Heard Electric LLC	$26 y r s$

Section 4: Applicants Requesting Medical Gas Inspector Certification
Attach proof of certification by an ASSE recognized third-party certifier in accordance with ASSE standard 6020.

Section 5: OBC Building Inspection Experience Performed for a BBS Certified Bullding Department

BBS Certified Building Department	BBS Certified Position/Title	Duties	Date of Service, Length of Time (MM/DD $/ \mathrm{YY}$)

\qquad
First Name

Section 6: Electrical Safety Inspector (ESI) - Specific Experience Qualifications Applicants for Electrical Safety Inspector Oniy Must Complete This Item
Section 3783 of the Ohio Revised Code specifies that an applicant for a Certificate of Competency as an Electrical Safety Inspector must meet on of the following to qualify to take required examination. Please check the qualification that applies:

1. electrician foreman, and have had two years' experience as a building department electrical inspector trainee;
2. \square Have been a journeyman electrician or equivalent for four years and have had three years' experience as a building department electrical inspector trainee;
3. \square Have had for four years' experience as a building department electrical inspector trainee;
4. Have been a journeyman electrician or equivalent for six years;
5. Am a graduate electrical engineer and registered in the State of Ohio. Registration number: 22700
6. \square Applicant authorizes all testing organizations including ICC to provide test results to the BBS.

Section 7: Experience (Do Not Substitute with Other Resumes).

Refer to Experience Requirements Listed in O.A.C. 4101:7-3-01 and O.R.C. 3783
Below, list the specific projects you worked on, and the specific work you performed, your typical duties for each project, and dates of this work. You must demonstrate that you have the required number of months (years) of actual, practical experience for the certification requested (see matrix).
Provide letters from certified inspectors, employers, or contractors verifying your experience. Submit copies of any certificates, diplomas, or licenses. Remove all personal information.
Section 7 cont.: Experience

List Each Construction Project AND Specific Type of Work Performed	Name of Employer, Contact, Address, Telephone Number	Project Time: From_ To (MMMYY)
Example: Children's Hospital, Toledo Structural steel work on addition	Homer Steel and Trade 125 Anytown Street My City, OH, 45454 (419)555-1212	July 2013-May 2014 (10 months)

Board of Building Standards Heard
Last Name

Application for Interim Certification, Building Department Personnel
\qquad $\frac{\text { Michael }}{\text { First Name }}$

Board of Building Standards
 Last Name

Application for Interim Certification, Building Department Personnel
\qquad
First Name

Section 8: Personal History

1. Have you ever been convicted of any felony, or any crime involving moral turpitude?

If you answered "Yes" please explain below:
2. Have you served in the U.S. armed services? (If No, skip question 3)
3. If YES, were you discharged under honorable conditions?

If you answered "No" please explain below:

| |
| :--- | :--- |
| |
| |
| |

Section 9: Certification

I certify the information contained in this application is true and complete, and I understand that providing false information may be grounds for not granting certification or for immediate termination of certification at any point in the future, if granted. l authorize the investigation of all statements contained herein and release all parties from all liability for any damage that may result from furnishing the same to Ohio Board of Building Standards. Falsification is a violation of section 2921.13 of the Ohio Revised Code and is punishable as a misdemeanor of the first degree.

Signature of Applicant:

Subscribed and duly sworn before me according to law, by the above named applicant this
 in the year $20 \partial \partial$
 _, County of and State of

Notary Public:

This is YOUR license. Plan Approvals obtained with YOUR license and posting of YOUR license indicates that YOU and YOUR liability insurance are assuming all responsibility for any projects performed under this license.

Ohio
 Bureau of Workers' Compensation

Certificate of Ohio Workers' Compensation

This certifies that the employer listed below participates in the Ohio State Insurance Fund as required by law. Therefore, the employer is entitled to the rights and benefits of the fund for the period specified. This certificate is only valid if premiums and assessments, including installments, are paid by the applicable due date. To verify coverage, visit www.bwc.ohio.gov, or call 1-800-644-6292.

Policy number and employer 01297719
HEARD ELECTRIC LLC
www.bwc.ohio.gov
Issued by: BWC

This certificate must be conspicuously posted.

> Period Specified Below $07 / 01 / 2022$ to 07/01/2023

Ohio Bureau of Workers' Compensation

Required Posting

Section 4123.54 of the Ohio Revised Code requires notice of rebuttable presumption. Rebuttable presumption means an employee may dispute or prove untrue the presumption (or belief) that alcohol, marihuana or a controlled substance not prescribed by the employee's physician is the proximate cause (main reason) of the work-related injury.

The burden of proof is on the employee to prove the presence of alcohol, marihuana or a controlled substance was not the proximate cause of the work-related injury. An employee who tests positive or refuses to submit to chemical testing may be disqualified for compensation and benefits under the Workers' Compensation Act.

CERTIFICATE OF LIABILITY INSURANCE

THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTHICATE DOES MOT AFFIRMATIVELY OR NEGATIVELY AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. THIS CERTIFICATE OF MSURANCE DOES NOT CONSTITUTE A CONTRACT BETWEEN THE ISSUING INSURER(S), AUTHORIZED REPRESENTATIVE OR PRODUCER, AND THE CERTIFICATE HOLDER.
IMPORTANT: If the certificate holfor is an ADDITIONAL INSURED, the policy(los) must be ondorted. If SUBROGATION IS WAIVED, sublect to the terms and conditions of the pollcy, certaln pollcles may requirs an endorsement. A stetement on this certificate doee not confer righte to the certificate holdor in lleu of such endorsement(s).

Prooucer \quad 330-492-2300Stark Insurance Agency4125 Martindale Rd NECanton, OH 44705	cownew	
	WSURERTS) AFFOROTNB COVERAGE	
	maurera: Wayne Mutual	
Heard Electric LLC	manarers:	
	ingurarc:	
	MSURERD:	
	INEURERE:	
	IMSURERF:	

COVERAGES
CERTIFICATE NUNBER:
REVISION NUAMBER:
THIS IS TO CERTIFY THAT THE POLICIES OF NSSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NAMED ABOVE FOR THE POLICY PERIOD INDICATED. NOTWITHSTANDING ANY REOUIREMENT, TERM OR CONDITION OF ANY CONTRACT OR OTHER DOCUMENT WITH RESPECT TO WHICH THIS CERTIFICATE MAY BE ISSUED OR MAY PERTAIN, THE INSURANCE AFFORDED BY THE POLICIES DESCRIBED HEREIN is SUEJECT TO ALL THE TERMS, EXCLUSIONS AND CONDITHONS OF SUCH POLICEES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAIMS.

CERTIFICATE HOLDER

CANCELLATION

8HOULD ANY OF THE ABOVE DESCRHED POLICIES RE CAMCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLLCY PROVISIONS.

AUTHORTIED REPRESENTATVE

STARK COUNTY BUILDING DEPARTMENT
 7235 Whipple Ave NW Suite A NORTH CANTON, OH 44720

Ohio Board of Building Standards
6606 Tossing Rd
Reynoldsburg, Ohio 43068

RE: Michael Heard

Building and Electrical inspector application

Dear Sirs and Madams;

It is my pleasure to recommend Michael Heard applicate for Building and Electrical inspector certification process. As a registered electrical contractor (in Stark County) and building contractor our inspectors and myself have great confidence in his abilities. You may contact me at any time for any questions or concerns.

Respectfully submitted,

Angela Cavanaugh, RA, Master Plans Examiner;
Chief Building Official Stark County
Phone \# 330-451-1793 ajcavanaugh@starkcountyohio.gov

June 06, 2022

Ohio Board of Building Standards
6606 Tossing Road
Reynoldsburg, Ohio 43068-9009

Re: Michael W. Heard

To: Electrical Safety Inspector Advisory Committee

Michael Heard has been a State of Ohio, Licensed Electrical Contractor; (OCILB) for over twenty years. I have inspected his electrical installations for numerous years and found them to in compliance with the National Electrical Code. He has a good working knowledge and understanding of the NEC requirements. I believe he would be an asset to the industry as an Electrical Safety Inspector. I recommend he should be approved to sit for the Electrical Safety Inspector exam, in Ohio.

Sincerely,
Job Mahiols
John M. Labriola, Principal
Training Agency \#191
BBS Personnel ID\# 815

To whom it may concem,

I've known Michael Heard for 15 plus years from our respective professions. He has been a consummate professional in all my dealings with him. He brings an amiable personality and great knowledge to his peers and customers alike. I would strongly recommend him to anyone that may need his services done.

Rick Hoffman (234) 207-6598

Certificate of Completion
 O.C.I.L.B. Approved Course

awarded to:
Michael W. Heard
Ohio License \# EL. 22700

2020 "Proposed" National Electrical Code Changes \& Updates

Date: Saturday; February 26, 2022 Course \#1910054
8 Hours

John M. Labriola
John M. Labriola (Instructor)
Training Agency \#191

File Attachments for Item:

P-4 McClary, Jerry ESI
Certification ID\# 8888
Current certifications- None

Board of Building Standards

Application for Interim Certification, Building Department Personnel
\qquad
First Name

Section 1: Check Interim Certification(s) Being Requested

Building Official	Master Plans Examiner	Building Inspector	Electrical Safety Inspector	Fire Protection Inspector
Building Plans Examiner	Plumbing Plans Examiner	Mechanical Plans Examiner	\square Electrical Plans	Fire Protection Plans Examiner
	\square Plumbing Inspector	\square Mechanical Inspector	Non-Residential Industrial Unit Inspector	

Section 2: List Any Ohio License, Certificate, or Registration Held (Mark "T" If Trainee)

Description	Certificate Number	Date Received	
Architectural Registration			
P.E. Registration			
Res	Non-Res		
\square	\square	Building Official Certification	
\square	\square	Plans Examiner Certification	
\square	\square	Building Inspector Certification	
Mechanical Inspector			
\square	\square	Mertification	
Building Plans Examiner Certification			
Fire Protection Plans Examiner Certification			
Electrical Plans Examiner Certification			
Plumbing Plans Examiner Certification			
Fire Protection Inspector Certification			
Electrical Safety inspector Certification			
Plumbing Inspector Certification			
Fire Safety Inspector Certification			
Fire Protection System Designer Certification			
Medical Gas Piping Inspector Certification			

Board of Building Standards

Application for Interim Certification, Building Department Personnel

Section 3: Employment/Education

Formal Education	Date Graduated
Sonathand ALDES Hibu School	Juns 1-1986
Matsua County orb	
Related Vocational or Technical Training	Years' Experience
U.S. Military construction experience (MOS or other designation):	Years' Experience
Place of Employment:	Years' Employed
CASTE Roek Custon Everrar	20 \%eats

Section 4: Applicants Requesting Medical Gas Inspector Certification

Attach proof of certification by an ASSE recognized third-party certifier in accordance with ASSE standard 6020.

Section 5: OBC Building Inspection Experience Performed for a BBS Certified Building Department

BBS Certified Building Dopartment	BBS Certified Position/Title	Dutios	Date of Service, Length of Time (MM/DD $M Y$)

Section 6: Electrical Safety Inspector (ESI) - Specific Experience Qualifications

 Applicants for Electrical Safety Inspector Only Must Complete This Item Section 3783 of the Ohio Revised Code specifies that an applicant for a Certificate of Competency as an Electrical Safety Inspector must meet on of the following to qualify to take required examination. Please check the qualification that applies:1. \square Have been a journeyman electrician or equivalent for four years, two of which were as an electrician foreman, and have had two years' experience as a building department electrical inspector trainee;
2. \square Have been a journeyman electrician or equivalent for four years and have had three years' experience as a building department electrical inspector trainee;
3. \square Have had for four years' experience as a building department electrical inspector trainee;
4. \square Have been a journeyman electrician or equivalent for six years;
5. $\square \mathrm{Am}$ a graduate electrical engineer and registered in the State of Ohio. Registration number: \qquad
6. \square Applicant authorizes all testing organizations including ICC to provide test results to the BBS.

Section 7: Experience (Do Not Substitute with Other Resumes).

Refer to Experience Requirements Listed in O.A.C. 4101:7-3-01 and O.R.C. 3783
Below, list the specific projects you worked on, and the specific work you performed, your typical duties for each project, and dates of this work. You must demonstrate that you have the required number of months (years) of actual, practical experience for the certification requested (see matrix).
Provide letters from certified inspectors, employers, or contractors verifying your experience. Submit copies of any certificates, diplomas, or licenses. Remove all personal information.
Section 7 cont.: Experience

List Each Construction Project AND Specific Type of Work Performed	Name of Employer, Contact, Address, Telephone Number	Project Time: From_ To_ (MMMMY)
Example: Children's Hospital, Toledo Structural steel work on addifion	Homer Steel and Trade 125 Anytown Street My City, OH, 45454 $(419) 555-1212$	July 2013-May 2014 (10 months)

Board of Building Standards

Application for Interim Certification, Building Department Personnel

BBS Certification 10

List Each Construction Project AND Specific Type of Work Performed	Name of Employer, Contact, Address, Telephone Number	Project Time: From_To_ (MMMY)
Starteo apprevticestin, wikso new Homes for Dufyy, Ano private onners. SERvile Changes and Remodels	Hawicins Evecte, Lilly citasel ortio dim intawe ins - Owater Comatany desocueo	$\begin{array}{r} \text { SEATEMBEX } 16 \\ 1986 \\ \text { MAY } 17.1988 \end{array}$
wheso nin itemer for Rocieñnd AND MI thenES ALONe with VMRIOUS OTHER BuIDSRS Gor into custom hones wikinia. WIRED ANA SET SERviLES on NumSROUS AAPARTmENT provetrs. WAS PART in WIR,WG of Two Cross covntry InN MOTELS - AVBBR AND OLENTANICY RivER R-AAO. also iemodel of CONCOURSE HOTEL AT THE AHRPORT.	Central oltio Electric hilliano otio Hezo wanas coune north Bufond (Bunp) stovt JAMES R Vofi Mike ETLINA COMP ANY DESOLNED	MAY $18 \quad 1988$ APRIL 19,1999
SUPERVISUR FOR CREWS Plan take offis Quotive of Jo3s Occasional wiventa of Housss on Vareious Arajects	Martion eustom electric MILCE MARTIN company desolved	APRIL 20,1999 MAY 2-2022
Owner of company wirina of track And CUSTOM HOMES FOR VARIOUS BuILDERS SCHUMACHER, JUSTUS CREASTON MCKORMICR, MABRY CONST. Smucker const. Larry Joltason bullders wive Buildons, UwiBuilt, T.IK CONSTRUCTORS, ECT. service chamuces. GEmientons, ag pole barns. CONDUGEO DAYTO DAM S, Bids Billiwa. SCHEOULina or PRoJECTS	CASTLE RDCR Custon electric Jorky meclaky 25096 Storns Rond WEST MUASFELL OITDO 43358 $937-302-0732$	MAy 22-2002 PRESENT
	Total Experience on This Page (In Months):	427 monthy

Board of Building Standards

Application for Interim Certification, Building Department Personnel

Section 8: Personal History

1. Have you ever been convicted of any felony, or any crime involving moral turpitude?

If you answered "Yes" please explain below:
2. Have you served in the U.S. armed services? (If No, skip question 3)
3. If YES, were you discharged under honorable conditions?
\square Yes \square No
If you answered "No" please explain below:

Section 9: Certification

I certify the information contained in this application is true and complete, and I understand that providing false information may be grounds for not granting certification or for immediate termination of certification at any point in the future, if granted. I authorize the investigation of all statements contained herein and release all parties from all liability for any damage that may result from fumishing the same to Ohio Board of Building Standards. Falsification is a violation of section 2921.13 of the Ohio Revised Code and is punishable as a misdemeanor of the first degree.

Subscribed and duly sworn before me according to law, by the above named applicant this day 30 of JUne in the year 2022 at at Union Canty County of Union and State of Ohio \qquad $\xrightarrow{4}$

Lisa Damion

Notary Public, State of Ohio
My commission expires 12/2812025

File Attachments for Item:

P-5 Sanders, Cecil ESI
Certification ID\# 8880
Current certifications- none

Board of Building Standards

Application for Interim Certification, Building Department Personnek
\qquad
First Name

Section 1: Check Interim Certification(s) Being Requested

\square Building Official	Master Plans Examiner	Building Inspector	Electrical Safety Inspector	Fire Protection Inspector
\square Building Plans	\squarePlumbing Plans Examiner	\square Mechanical Plans Examiner	Electrical Plans Examiner	Fire Protection Plans Examiner
	Examiner	Plumbing Inspector	Mechanical Inspector	Non-Residential Industrial Unit Inspector

Section 2: List Any Ohio License, Certificate, or Registration Held

(Mark "T" If Trainee)

Description	Certlificate Number	Date Recelved	
Architectural Registration			
P.E. Registration			
Res	Non-Res		
\square	\square	Building Official Certification	
\square	\square	Plans Examiner Certification	
\square	\square	Building Inspector Certification	
	Mechanical Inspector Certification		
\square	\square		
Building Plans Examiner Certification			
Mechanical Plans Examiner Certification			
Fire Protection Plans Examiner Certification			
Electrical Plans Examiner Certification			
Plumbing Plans Examiner Certification			
Fire Protection Inspector Certification			
Electrical Safety Inspector Certification			
Plumbing Inspector Certification			
Fire Safety Inspector Certification			
Fire Protection System Designer Certification			
Medical Gas Piping Inspector Certification			

Board of Building Standards

Application for Interim Certification, Building Department Personnel

First Name

SECTION 3: Employment/Education

Section 4: Applicants Requesting Medical Gas Inspector Certification

Attach proof of certification by an ASSE recognized third-party certifier in accordance with ASSE standard 6020.

Section 5: OBC Building Inspection Experience Performed for a BBS Certified Building Department

BBS Certifled Building Department	BBS Certifled Position/Title	Dutles	Date of Service, Length of Time (MM/ODMY)

Section 6: Electrical Safety Inspector (ESI) - Specific Experience Qualifications Applicants for Electrical Safety Inspector Only Must Complete This Item
Section 3783 of the Ohio Revised Code specifies that an applicant for a Certificate of Competency as an Electrical Safety Inspector must meet on of the following to qualify to take re"uired examination. Please check the qualification that applies:

1. [Have been a journeyman electrician or equivalent for four years, two of which were as an electrician foreman, and have had two years' experience as a building department electrical inspector trainee;
2. \square Have been a journeyman electrician or equivalent for four years and have had three years' experience as a building department electrical inspector trainee;
3. \square Have had for four years' experience as a building department electrical inspector trainee;
4. ZHave been a journeyman electrician or equivalent for six years;
5. \square Am a graduate electrical engineer and registered in the State of Ohio. Registration number:
6. Applicant authorizes all testing organizations including ICC to provide test results to the BBS.

Section 7: Experience (Do Not Substitute with Other Resumes).

Refer to Experience Requirements Listed in O.A.C. 4101:7-3-01 and O.R.C. 3783
Below, list the specific projects you worked on, and the specific work you performed, your typical duties for each project, and dates of this work. You must demonstrate that you have the required number of months (years) of actual, practical experience for the certification requested (see matrix).
Provide letters from certified inspectors, employers, or contractors verifying your experience.
Submit copies of any certificates, diplomas, or licenses. Remove all personal information.
SEction 7 cont.: Experience

Board of Building Standards
\qquad Sanders
Last Name

Application for Interim Certification, Building Department Personnel

First Name

BBS Certification 10

* Many more projeds from 1989 -Present not listed available upon request.

Board of Building Standards

Last Name

First Name

Section 8: Personal History

1. Have you ever been convicted of any felony, or any crime involving moral turpitude?

If you answered "Yes" please explain below:

3. If YES, were you discharged under honorable conditions?

If you answered "No" please explain below:

Section 9: Certification

I certify the information contained in this application is true and complete, and / understand that providing false information may be grounds for not granting certification or for immediate termination of certification at any point in the future, if granted. I authorize the investigation of all statements contained herein and release all parties from all liability for any damage that may result from fumishing the same to Ohio Board of Building Standards. Falsification is a violation of section 2921.13 of the Ohio Revised Code and is punishable as a misdemeanor of the first degree.

Signature of Applicant:

Subscribed and duly sworn before me according to law, by the above named applicant this dayzand of Nee and State of in the year 2022 at

BARBARA BOYLE

Notary Public
State of Ohio
Commission Exp. 09/29/2025

File Attachments for Item:

P-6 Scott, Jeremy BI, ESI
Certification ID\# 8900
Current certifications- none

Board of Building Standards Application for Interim Certification, Building Department Personnel

Scott
Last Name

Jeremy
First Name

BBS Certification ID

Section 1: Check Interim Certification(s) Being Requested

\square Building Official	Master Plans Examiner	 Building Inspector	Electrical Safety Inspector	Fire Protection Inspector
Building Plans Examiner	Plumbing Plans Examiner	Mechanical Plans Examiner	Electrical Plans Examiner	Fire Protection Plans Examiner
	Plumbing Inspector	Mechanical Inspector	Non-Residential Industrial Unit Inspector	

Section 2: List Any Ohio License, Certificate, or Registration Held (Mark "T" If Trainee)

Description	Certificate Number	Date Received	
Architectural Registration			
P.E. Registration			
Res	Non-Res		
\square	\square	Building Official Certification	
\square	\square	Plans Examiner Certification	
\square	\square	Building Inspector Certification	
Mechanical Inspector Certification			
\square	\square		
Building Plans Examiner Certification			
Mechanical Plans Examiner Certification			
Fire Protection Plans Examiner Certification			
Electrical Plans Examiner Certification			
Plumbing Plans Examiner Cetification			
Fire Protection Inspector Certification			
Electrical Safety Inspector Certification			
Plumbing Inspector Certification			
Fire Safety Inspector Certification			
Fire Protection System Designer Certification			
Medical Gas Piping Inspector Certification			

Board of Building Standards Application for Interim Certification, Building Department Personnel

Scott Jeremy

First Name
BBS Certification ID

Section 3: Employment/Education

Formal Education	Date Graduated
BA-American Military University	April 2022
Related Vocational or Technical Training	Years' Experience
U.S. Military construction experience (MOS or other designation):	Years' Experience
Camp Commandant/Team Engineer (MOS 18C/assistant)	$05 /{ }^{\prime} 06 / 09 / 12 / 13 / 21$
Unit Construction Supervisor (MOS 13XX)	$2016-2020$
Place of Employment:	Years' Employed
United States Marine Corps	20
North Ridgeville Building Department	3 Months

Section 4: Applicants Requesting Medical Gas Inspector Certification

Attach proof of certification by an ASSE recognized third-party certifier in accordance with ASSE standard 6020.

Section 5: OBC Building Inspection Experience Performed for a BBS Certified Building Department

BBS Certified Building Department	BBS Certified Position/Title	Duties	Date of Service, Length of Time (MM/DD M)

Board of Building Standards
Scott
Last Name

Application for Interim Certification, Building Department Personnel
Jeremy
First Name

Section 6: Electrical Safety Inspector (ESI) - Specific Experience Qualifications Applicants for Electrical Safety Inspector Only Must Complete This Item
Section 3783 of the Ohio Revised Code specifies that an applicant for a Certificate of Competency as an Electrical Safety Inspector must meet on of the following to qualify to take required examination. Please check the qualification that applies:

1. \square Have been a journeyman electrician or equivalent for four years, two of which were as an electrician foreman, and have had two years' experience as a building department electrical inspector trainee;
2. \triangle Have been a journeyman electrician or equivalent for four years and have had three years' experience as a building department electrical inspector trainee;
3. \square Have had for four years' experience as a building department electrical inspector trainee;
4.Have been a journeyman electrician or equivalent for six years;
5.Am a graduate electrical engineer and registered in the State of Ohio. Registration number: \qquad
4. \square Applicant authorizes all testing organizations including ICC to provide test results to the BBS.

Section 7: Experience (Do Not Substitute with Other Resumes).
Refer to Experience Requirements Listed in O.A.C. 4101:7-3-01 and O.R.C. 3783
Below, list the specific projects you worked on, and the specific work you performed, your typical duties for each project, and dates of this work. You must demonstrate that you have the required number of months (years) of actual, practical experience for the certification requested (see matrix).
Provide letters from certified inspectors, employers, or contractors verifying your experience. Submit copies of any certificates, diplomas, or licenses. Remove all personal information.
Section 7 cont.: Experience

Scott Jeremy		
Last Name	First Name	BBS Certification ID
List Each Construction Project AND Specific Type of Work Performed	Name of Employer, Contact, Address, Telephone Number	Project Time: From_To _ ($\mathrm{MM} / \mathrm{YY}$)
U.S. Government Office Space on U.S. Military Base in Bahrain Commercial Construction Building and Electrical as Construction Supervisor and Journeyman Electrician equivalent U.S. Government Secure Office Space and Meeting Room on U.S. Military Base in Herat, Afghanistan Commercial Construction Building and Electrical as Construction Supervisor and Journeyman Electrician equivalent U.S. Government Secure Office Space and Meeting Room on U.S. Military Base in Helmand, Afghanistan Commercial Construction Building and Electrical as Construction Supervisor and Journeyman Electrician equivalent U.S. Government Moral, Welfare, and Recreation Center on U.S. Military Base in Al Taqqadum, Iraq Commercial Construction Building and Electrical as Construction Supervisor and Journeyman Electrician equivalent	5th MEB TF 51/5 PCS 851 Box 320 FPO, AE 09834 Chief Warrent Officer-3 Ryan Butler 315-246-3223 Marine Spectial Operations Command, 2nd MSOB Camp Lejuene, NC 28543 Chief Warrent Officer-3 Ahern Putnam 910-440-7017 2nd Battalion/8th Marines Secand Marine Regiment PSC Box 20103 Camp Lejuene, NC 28543 First Sergeant Jose Hernandez 910-451-5254 VMU-2 PSC Box 8077 Cherry Point, NC 28533 Sergeant Major Michael Grey 252-466-7560	06/16-12/17 18 Months 11/12-4/13 6 Months 4/09-11/09 7 Months 2/06-11/06 9 Months

Scott

Last Name

Jeremy

List Each Construction Project AND Specific Type of Work Performed	Name of Employer, Contact, Address, Telephone Number	$\begin{aligned} & \text { Project Time: From_To_ } \\ & \left(\mathrm{MM} N \mathrm{Y} \mathrm{Y}_{-}\right. \end{aligned}$
Painesville High School Wrestling Gym 585 Painesville, Ohio 44077 Commercial Eletrical Journeyman Electrician equivalent	Scott Electricl Service 13300 Madison Ave Lakewood, Ohio 44107 Dave Graham 440-552-7571	4/01-9/02 17 Months
Apartment Building 8005 Detroit Ave Cleveland, Ohio 44102 Commercial Eletrical Jou¥neyman Electrician equivalent	Scott Electricl Service 13300 Madison Ave Lakewood, Ohio 44107 Dave Graham 440-552-7571	6/99-8/01 26 Months
Apartment Building 1389 W. 64th Street Cleveland, Ohio 44102 Commercial Eletrical Journeyman Electrician equivalent	Scott Electricl Service 13300 Madison Ave Lakewood, Ohio 44107 Dave Graham 440-552-7571	$\begin{aligned} & 1 / 98-11 / 00 \\ & 34 \text { Months } \end{aligned}$

Board of Building Standards
Scott
Last Name

Section 8: Personal History

1. Have you ever been convicted of any felony, or any crime involving moral turpitude?

If you answered "Yes" please explain below:
2. Have you served in the U.S. armed services? (If No, skip question 3)
\square Yes \square No
3. If YES, were you discharged under honorable conditions? \square Yes \square No
If you answered "No" please explain below:
I am currently working with the City of North Ridgeville Building Department as part of the U.S. Government sponsored program
Onward to Opportunity-Hiring Our Hero's Corporate Fellowship as part of my retirment transition program from active duty I intend on
accepting a position as a Building and Toning Inspector once L complete this fellowship and will work within the North Ridgeville Building Department. Attached is a Statement of Service highlighting my approved retirement date.

Section 9: Certification

I certify the information contained in this application is true and complete, and I understand that providing false information may be grounds for not granting certification or for immediate termination of certification at any point in the future, if granted. I authorize the investigation of all statements contained herein and release all parties from all liability for any damage that may result from fumishing the same to Ohio Board of Building Standards. Falsification is a violation of section 2921.13 of the Ohio Revised Code and is punishable as a misdemeryor of the first degree.

Signature of Applicant:

Subscribed and duly sworn before me according to law, by the above named applicant this day 4 of August in the year 2022 at North Ridgeville, County of

UNITED STATES MARINE CORPS
1ST INTELLIGENCE BATTALION I MARINE EXPEDITIONARY FORCE INFORMATION GROUP

I MARINE EXPEDITIONARY FORCE
BOX 555327
CAMP PENOLETON. CA 92055-5327
natply yefer to 1000 $\times 0$
8 Feb 22

From: Executive Officer, Counterintelligence/Human Intelligence Company, First Intelligence Battalion
To: Whom It May Concern
Subj: STATEMENT OF SERVICE/NOTICE OF ACCEPTANCE OF RETIREMENT AND ESTIMATED RETIREMENT PENSION PAY IN THE CASE OF MASTER SERGEANT JEREMY M. SCOTT \square USMC

1. This is to certify that Master Sergeant Scott is an Active Duty United States Marine assigned to this command on Camp Pendleton. California. Master Sergeant Scott has been accepted for retirement from active duty.
2. Master Sergeant Scott is retiring after 20 years, one month and 19 days. Master Sergeant Scott's retirement pay is estimated to be \square beginning in January 2023. Master Sergeant Scott is pending determination of disability rating from the Veterans Affairs.
3. Certified below is additional service related information pertaining to Master Sergeant Scott:
a. Military Status: Active
b. Citizenship: US
c. Date of Initial Entry: 11 November 2002
d. Date of Current Enlistment: 12 December 2019
e. Date Current Tour Began: 1 April 2020
f. Expiration of Active Service/Retirement: 31 December 2022
4. The point of contact is First Lieutenant Michael Crookshanks at Michael.crookshankseusuc.mil or Comm: (760) 725-7226.

M. P. CROOKSHANKS

File Attachments for Item:

P-7 Wakefield, Alex ESI
Certifications ID\# 8905
Current certifications- None, Journeyman IBEW 25 years

Section 1: Check Interim Certification(s) Being Requested

\square Building Official				
	Master Plans Examiner	Building Inspector	\square Electrical Safely Inspector	Fire Protection Inspector
\square Building Plans	\squarePlumbing Plans Examiner	Mechanical Plans Examiner	Electrical Plans Examiner	Fire Protection Plans Examiner
	Exumbing Inspector	Mechanical Inspector	\square Non-Residential Industrial Unit Inspector	

Section 2: List Any Ohio License, Certificate, or Registration Held (Mark "T" If Trainee)

Description	Certificate Number	Date Received	
Architectural Registration			
P.E. Registration			
Res	Non-Res		
\square	\square	Building Official Certification	
\square	\square	Plans Examiner Certification	
\square	\square	Building Inspector Certification	
	Mechanical Inspector Certification		
\square	\square		
Building Plans Examiner Certification			
Mechanical Plans Examiner Certification			
Fire Protection Plans Examiner Certification			
Electrical Plans Examiner Certification			
Plumbing Plans Examiner Certification			
Fire Protection Inspector Certification			
Electrical Safety Inspector Certification			
Plumbing Inspector Certification			
Fire Safety Inspector Certification			
Fire Protection System Designer Certification			
Medical Gas Piping Inspector Certification			

Board of Building Standards
Wakefield
Last Name

Application for Interim Certification, Building Department Personnel

Alex

First Name

Section 3: Employment/Education

Formal Education	Date Graduated
Glen Este High School	1978
Related Vocational or Technical Training	
IBEW Electrical 4 year Apprenticeship	Years' Experience
Warren County Career Center HVAC	25 Years
U.S. Military construction experience (Mos or other designation):	11 Years
US Navy Electricians Mate	Years' Experience
Place of Employment:	4
Kings Local School District	Years' Employed

Section 4: Applicants Requesting Medical Gas Inspector Certification

Attach proof of certification by an ASSE recognized third-party certifier in accordance with ASSE standard 6020.

Section 5: OBC Building Inspection Experience Performed for a BBS Certified Building Department

BBS Certified Building Department	BBS Certified Position/Title	Duties	Date of Service, Length of Time (MM/DDYY)

Board of Building Standards
Wakefield
Last Name

Section 6: Electrical Safety Inspector (ESI) - Specific Experience Qualifications Applicants for Electrical Safety Inspector Only Must Complete This Item Section 3783 of the Ohio Revised Code specifies that an applicant for a Certificate of Competency as an Electrical Safety Inspector must meet on of the following to qualify to take required examination. Please check the qualification that applies:
1.Have been a journeyman electrician or equivalent for four years, two of which were as an electrician foreman, and have had two years' experience as a building department electrical inspector trainee;
2. \square Have been a journeyman electrician or equivalent for four years and have had three years' experience as a building department electrical inspector trainee;
3.Have had for four years' experience as a building department electrical inspector trainee;
4. [Have been a journeyman electrician or equivalent for six years;
5. \square Am a graduate electrical engineer and registered in the State of Ohio. Registration number:
6.Applicant authorizes all testing organizations including ICC to provide test results to the BBS.

Section 7: Experience (Do Not Substitute with Other Resumes).

Refer to Experience Requirements Listed in O.A.C. 4101:7-3-01 and O.R.C. 3783
Below, list the specific projects you worked on, and the specific work you performed, your typical duties for each project, and dates of this work. You must demonstrate that you have the required number of months (years) of actual, practical experience for the certification requested (see matrix).
Provide letters from certified inspectors, employers, or contractors verifying your experience. Submit copies of any certificates, diplomas, or licenses. Remove all personal information.
Section 7 cont.: Experience

List Each Construction Project AND Specific Type of Work Performed	Name of Employer, Contact, Address, Telephone Number	Project Time: From_ To (MM/YY)
Example: Children's Hospital, Toledo Structural steel work on addition	Homer Steel and Trade 125 Anytown Street My City, OH, 45454 (419)555-1212	July 2013-May 2014 (10 months)
SEE ATTACHED	A member of IBEW local 212	
Total Experience on This Page (In Months):		

Alex
First Name

Name of Employer, Contact, Address,
Telephone Number Name of Employer, Contact, Address,
Telephone Number

Project Time: From_To _
List Each Construction Project AND Specific Type of Work Performed
-. Specinic Type of Work Performed

Alex
First Name

Section 8: Personal History

1. Have you ever been convicted of any felony, or any crime involving moral turpitude?

If you answered "Yes" please explain below:
2. Have you served in the U.S. armed services? (If No, skip question 3)
3. If YES, were you discharged under honorable conditions?

If you answered "No" please explain below:

Section 9: Certification

I certify the information contained in this application is true and complete, and I understand that providing false information may be grounds for not granting certification or for immediate termination of certification at any point in the future, if granted. I authorize the investigation of all statements contained herein and release all parties from all liability for any damage that may result from furnishing the same to Ohio Board of Building Standards. Falsification is a violation of section 2921.13 of the Ohio Revised Code and is punishable as a misderpeanor of the first degree.
\qquad

Subscribed and duly sworn before me according to law, by the above named applicant this day $\frac{29}{}$ of July in the year 2022 at KingS Mills, OH, County of Warren a and State of -
Notary Public: \qquad - ar Modern

START DATE	TERM. DATE	EMPLOYER	TERM REASON	DISPATCH CLASS
07/31/1985	02/28/1986	ARCHIABLE ELECTRIC	REDUCTIONIN	
05/21/1986		SCHERRER ELECTRIC	REDUCTIONIN	
04/13/1989	05/23/1989	RIVERSIDE ELECTRIC	REDUCTION IN	
05/25/1989	1207/1990	L.K COMSTOCK	REDUCTIONIN	
05/28/1991	06/13/1991	GLENWOOD ELECTRIC	REDUCTION IN	
06/24/1991	07/02/1991	DIAZ	REDUCTIONIN	
07/08/1991	07/26/1991	E.S.I. INC.	REDUCTIONIN	
08/05/1991	08/22/1991	KATHMAN ELECTRIC	REDUCTIONIN	
08/26/1991	09/13/1991	A\&ZELECTRIC	REDUCTIONIN	
10/07/1991	10/10/1991	LEGGE	REDUCTIONIN	
10/10/1991	10/31/1991	NITRO	REDUCTIONIN	
11/04/1991	11/04/1931	ELEX INC.	REQUEST	
11/13/1991	12/04/1991	BANTAELECTRIC	REDUCTIONIN	
12/6/1991		KATHMAN ELECTRIC	TURNEDAROUND	
12/17/1991	01/03/1992	SNEED	REDUCTION IN	
01/20/1992		EMI (MiRg Group)	ILLNESS	
01/22/1992	0206/1992	WW. CLARK	REDUCTION IN	
0207/1992	0207/1992	luceelectric	REDUCTIONIN	
02/10/1992	02/27/1992	EMI (MIRG GROUP)	REDUCTIONIN	
03/02/1992	03/20/1992	QUALITY ELECTRIC	REDUCTION IN	
03/24/1992	03/26/1992	WW. CLARK	REDUCTIONIN	
03/30/1992	04/17/1992	DEARBORN	REDUCTIONIN	
04/27/1992	05108/1992	MAYERS ELECTRIC	REDUCTION IN	
04/27/1992		ARCHIABLEELECTRIC	REFUSED CALL	
05/13/1992		GLENWOOD ELECTRIC	REDUCTION IN	

StART DATE	TERM. DATE	EMPLOYER	TERM. REASON	DISPATCH CLASS
06/08/1992		MAYERSELECTRIC	ILLNESS	
06/08/1992		WW. CLARK	REFUSED CALL	
06/10/1992	06/23/1992	RIVERSIDE ELECTRIC	REDUCTIONIN	
06/24/1992		WW. CLARK	REFUSED CALL	
06/30/1992		HIGH VOLTAGE MAINT.	ILLNESS	
07/13/1992	11/12/1992	ARROW	REDUCTIONIN	
03/29/1993	04/16/1993	SNEED	LAYOFF SHORT CALL	
04/29/1993	09/14/1993	L.K COMSTOCK	REDUCTION IN	
03/21/1994	04/08/1994	SNEED	LAYOFF SHORT CALL	
06/06/1994	10/14/1994	D'LAURIN ELECTRIC CO,	REDUCTION IN	
10/18/1994	03/24/1995	CACHE VALLEY ELECTRIC	REDUCTION IN	
05/15/1995	06/02/1995	MAYERS ELECTRIC	LAYOFF SHORT CALL	
08/14/1995	01/11/1996	SUPERIOR	REDUCTION \mathbb{N}	
09/24/1996	10/11/1996	GLENWOOD ElECTRIC	LAYOFF SHORT CALL	
11/25/1996	12/10/1996	GLENWOODELECTRIC	LAYOFF SHORT CALL	
12/21/1996	12/24/1996	ELEXINC.	LAYOFF SHORT CALL	
04/15/1997	06/26/1997	MAYERS ELECTRIC	REDUCTIONIN	
06/26/1997	07/24/1997	R. kelly	REDUCTION IN	
07/28/1997	08/07/1997	BANTAELECTRIC	REDUCTIONIN	
08/11/1997	11/21/1997	OWENSVILEELECTRIC	REDUCTION IN	
05/04/1998	09/04/1998	EMI (MIRG GROUP)	REDUCTION IN	
11/23/1998	04/02/1999	HYRE	REDUCTIONIN	
04/12/1999	04/27/1999	BANTAELECTRIC	REDUCTION IN	
04/27/1999	05/18/1999	GLENWOOD ELECTRIC	REDUCTION IN	
05/21/1999	09/03/1999	HALL ENGINEERING	REDUCTION IN	
09/16/1999	09/22/1999	LUCEELECTRIC	REDUCTION IN	

START DATE	TERM DATE	EMPLOYER	TERM. REASON	DISPATCH CLASS
10/05/1999	12107/1999	UNITED ELECTRIC CO.	REDUCTION IN	
1208/1999	03/10/2000	ESIIINC.	REDUCTION IN	
03/14/2000	03/24/2000	LK COMSTOCK	REDUCTION IN	
03/2712000	07/13/2000	MNI ELECTRIC	REDUCTION IN	
07/17/2000	09/19/2000	ED SIMON \& CO.	REDUCTIONIN	
09/20/2000	09/22/2000	AYER ELECTRIC	LAYOFF SHORT CALL	
02/19/2001	04/13/2001	GLENWOOD ElECTRIC	REDUCTION IN	
09/17/2001	06/07/2002	BANTAELECTRIC	REDUCTION IN	
09/17/2001		AYERELECTRIC	QUITNOLUNTARY	
07/24/2002	08/23/2002	FLUOR CONSTRUCTORS	REDUCTIONIN	
08/30/2002	05/27/2004	BANTAELECTRIC	REDUCTION IN	
08/30/2004	01/28/2005	BANTAELECTRIC	REDUCTIONIN	INSIDE J.W.
02/22/2005	02/25/2005	BANTAELECTRIC	REDUCTIONIN	INSIDE J.W.
08/01/2005	03/03/2006	BANTAELECTRIC	REDUCTION IN	INSIDE J.W.
04/17/2006	06/09/2006	BANTAELECTRIC	REDUCTION IN	INSIDE J.W
07/24/2006	08/25/2006	BANTAELECTRIC	REDUCTION IN	INSIDE J.W.
11/06/2006	01/08/2007	WAGNER INDUSTRIL ELECTRIC	QUTNOLUNTARY	INSIDE J.W.
01/08/2007	08/44/2009	BANTAELECTRIC	REDUCTIONIN	INSIDE J.W.
09/08/2009	1231/2009	BANTAELECTRIC	REDUCTIONIN	INSIDE J.W.
05/24/2010	05/28/2010	BANTAELECTRIC	LAYOFF LESS THAN	INSIDE J.W.

File Attachments for Item:

P-8 Wilson, Aaron ESI, RBI
Certification ID\# 8904
Current certifications- none

Board of Building Standards
Wilson
Last Name

Application for Interim Certification, Building Department Personnel

Aaron

First Name

Section 1: Check Interim Certification(s) Being Requested

\square Res. Building Official	\square Res. Plans Examiner	$\boxed{\text { Res. Building Inspector }}$
	\square Res. Industrial Unit Inspector	\square Res. Mechanical Inspector

Section 2: list Any Ohio license, Certificate, or Registration Held (Mark "T" If Trainee)

Description	Certificate Number	Date Received	
Architectural Registration			
P.E. Registration			
Res	Non-Res		
\square	\square	Building Official Certification	
\square	\square	Plans Examiner Certification	
\square	\square	Building Inspector Certification	
Building Plans Examiner Certification			
\square	\square	Mechanical Inspector Certification	
Mechanical Plans Examiner Certification			
Fire Protection Plans Examiner Certification			
Electrical Plans Examiner Certification			
Plumbing Plans Examiner Certification			
Fire Protection Inspector Certification			
Electrical Safety Inspector Certification			
Plumbing Inspector Certification			
Fire Safety Inspector Certification			
Fire Protection System Designer Certification			
Medical Gas Piping Inspector Certification			

Section 3: Employment/Education

a. Formal Education	Date Graduated
Associated Builders and Contractors, Sinclair Community College	$8-31-2007$
b. Related Vocational or Technical Training	Years' Experience
Associated Builders and Contractors, Sinclair Community College	$4+$
c. U.S. Military construction experience (MOS or other designation):	Years' Experience
d. Place of Employment:	Years' Employed
Applied Research Solutions, Cohen Brothers, Dayton Public Schools,	21

Fuyao Glass, Ohio Valley Elec, Beacon Elec, LVS

Wilson
Last Name

Aaron
First Name

Section 4: OBC/RCO Building Inspection Experience Performed for a BBS Certified Building Department

BBS Certified Building Department	BBS Certified Position/Title	Duties	Date of Service, Length of Time (MM/DD M Y)

Section 5: Experience (Do Not Substitute with Other Resumes).
 Refer to Experience Requirements Listed in O.A.C. 4101:7-3-01 and O.R.C. 3783

Below, list the specific projects you worked on, and the specific work you performed, your typical duties for each project, and dates of this work. You must demonstrate that you have the required number of months (years) of actual, practical experience for the certification requested (see matrix).
Provide letters from certified inspectors, employers, or contractors verifying your experience. Submit copies of any certificates, diplomas, or licenses. Remove all personal information.

List Each Construction Project AND Specific Type of Work Performed	Name of Employer, Contact, Address, Telephone Number	Project Time: From_To_ ($\mathrm{MM} / \mathrm{Y} \mathrm{Y}$)
Example: Children's Hospital, Toledo Structural steel work on addition	Homer Steel and Trade 125 Anytown Street My City, OH, 45454 (419)555-1212	July 2013-May 2014 (10 months)
Various projects, OhioKentucky area Instailed lighting, receptacles, distribution systems, troubleshoot, conduit, new construction and remodel.	Beacon Electric 7815 Redsky Dr. Cincinnati, OH 45249 513-851-0711	April 2007-November 2008 (19 months)
Ohio district schools, Ohio Installed automated building systems, HVAC controls, troubleshoot, electrical distribution.	Low voltage specialists 291 West Bergey St. Wadsworth, OH 44281 330-336-5097	April 2009-November 2011 (31 months)
Various projects, Ohio Installed lighting, receptades, distribution systems, troubleshoot, conduit, new construction, remodel, fire alarm systems.	Ohio valley electrical 4582 Comell Rd. Blue Ash, OH 45241 513-771-2410	December 2011-June 2015 (56 months)
Total Experience on This Page (In Months):		106

Board of Building Standards
Wilson
Last Name

SECTION 5 CONT.: Experience

$\frac{\text { Wilson }}{\text { Last Name }}$
\qquad
First Name
BBS Certification ID

Section 6: Personal History

1. Have you ever been convicted of any felony, or any crime involving moral turpitude? \square Yes \boxtimes No
2. If you answered "Yes" please explain below:
3. Have you served in the U.S. armed services? (If No, skip question 3)
\square Yes \square No
4. If YES, were you discharged under honorable conditions?If you answered "No" please explain below:

Section 7: Certification

I certify the information contained in this application is true and complete, and I understand that providing false information may be grounds for not granting certification or for immediate termination of certification at any point in the future, if granted. I authorize the investigation of all statements contained herein and release all parties from all liability for any damage that may result from furnishing the same to Ohio Board of Building Standards. Falsification is a violation of section 2921.13 of the Ohio Revised Code and is punishable as a misdemeanor of the first degree.

Signature of Applicant:

Subscribed and duly sworn before me according to law, by the above named applicant this day 5 th of August in the year 2022 at Foirborn , county of Greene and
State of Ohio
\qquad .

Notary Public:

$A R S$

Mr. Aaron Wilson

is awarded the ARS Quarterly Award
for his exemplary work and dedication to the NASIC and LGX missions. Mr. Wilson is an integral part of the LGX Execution Team where he serves as an electrical technician assessing existing power circuitry within a $650,000 \mathrm{sq} \mathrm{ft}$ national defense mission oriented facility. He is also responsible for hooking up all electric to facility workstations that are either reconfigured or brand new. Mr. Wrilson's role has been crucial to the overall success of the LGX team providing in house electrical support. These efforts are directly responsible for projects remaining on or ahead of schedule, ensuring critical NASIC missions continue uninterrupted. In addition to his technical successes, Mr. Wrilson's professionalism and attitude exceeds customer expectations, bolstering team cohesion and effectiveness. He is always willing to go above and beyond his duties to assure that the mission is supported to fullest of his capabilities.

Robin De la Veg?
2020
Program Manager

July 26 th, 2022

To: Whomitmay Concem

This letter is regarding the pravious employment stats for Aaron Wilson, who was an employee with Cohen Brothers beginning on 04/09/2018. Aaron was employed as a journeyman electrician until his resignation on $3 / 15 / 2019$, when given the opportunity to further his skills outside of our comparry.

Aaron was a dedicated worker during his terure with Cohen and we would not hesitate in saying that he would be a welcome addition to any company willing to consider him for employment.

Additional questions and infomation requasts, including personal references and work history records can be sent to the human resources department at (513) 422-3696 ext.2396.

Sincerely,
Brad Blawand

Human Resources Manager
Cohen Brothers Recycling

Darryl A Holt
Associate Director
Dayton Public School
4280 James H McGee Blvd
Dayton, Ohio, 45417
daholt6905@gmail.com

Re: Aaron Wilson; The Letter of Reference

To Whom It May Concern:

Mr. Aaron Wilson has worked in a number of professional services from industrial maintenance to building/facilities maintenance for a time of 5 years. Mr. Wilson has also served as public servant with the Dayton Public Schools where he was able to demonstrate host technical knowledge in the area of electrical applications.

Throughout his employment, Mr. Wilson has conducted himself with highest professionalism, commitment and dependability. Mr. Wilson had begun his career by working in maintenance and manufacturing Industry where he worked in the position of an ELECTRICLAN. This was definitely an incredibly challenging and a highly skilled person, Mr. Wilson has exceeded the expectations and was given a glowing review by management and her co-workers.

I would strongly recommend Mr. Wilson for any role within the Dayton Public Schools, where he surely would be a valuable asset. His skills, his professionalism and his dedication are definitely outstanding.

Please feel free to contact me at any point of time if you have any further quires.

Mr. Darryl A. Holt
937-760-1555

Governmental Verification

This verification is system-generated with data provided directly by the employer. If any information is missing, it is because the employer did not provide this information for inclusion in the CCC Verify verification.

The information displayed below is an official and authentic employment verification report generated from CCCVerify.com. This verification is system-generated with data provided by the employer directly. If any information is missing, it is because the employer did not provide this information for inclusion in the CCCVerify verification.

Report Requested: 7/22/2022 9:07 AM
Report Tracking Number: 9e62ca3d-80c0-4870-82fe-e56dc10dc985

Data Source

Name: FUYAO GLASS AMERICA, INC
Division:
Address: $\quad 800$ FUYAO AVENUE MORAINE OH 45439

Empioyee

First Name:	AARON	Last Name:	WILSON
Employee Address:			
Employee SSN:	001070	Work Site:	DAYTON
Employee ID:			

Hire and Separation Date(s):

Work Site	Most Recent Hire Date
DAYTON	$6 / 29 / 2015$

```
6/29/2015
INACTVE
ELECTRICAL TECHNICIAN
```

First Term Date:
Employment Type:
Current Length of Service:

8/17/2017
Full-time
2 Year(s), 2 Month(s)

Medical Benefits

Enrollment Type: NA
Employee Eligible:

NA

Carrier:
NA
Employee Enrolled:
NA

Dental Beneflis

Enrollment Type:	NA	Carrier:	NA
Employee Eligible:	NA	Employee Enrolled:	NA

Payroil

Pay:
Unused Vacation Amount: 29.00

NA
Unused Personal Amount:
NA
Unused Sick Pay Amount:

Rate Frequency:
Hourly

An Employee Owned Company
$8 / 4 / 22$

To whom this may concern,
Aaron Wilson was a journeyman electrician here at Ohio Valley Electrical from December 2011 to June 2015.

Thanks,
Annie Klayer
H月 Director

July 25,2022

Aaron Wis ion

Mr. Arron Wilson:

In response to your request to verify your employment with Low Voltage Specialists, Inc., I have the following information:

Hire Date: March 31, 2010
Release Date: November 19,2011
Position Low Vodatige Electrician
Total Hours Worked: 3468

Please let me know if you need any additional information or have any questions.
Sincerely,

Ellen M. ToIlet
President
\qquad
\qquad

Date:

To:
$\begin{array}{ll}\text { From: } & \text { Kathy Shock } \\ & \text { Payroll Administrator }\end{array}$

Re:
Employment dates for Aaron Wilson

Please be advised that Aaron worked for Beacon Electric Company as a Journeyman electrician from 4/30/2007 to 11/14/2008.

If you need additional information, please feel free to call at 513-851-0711 ext. 222.

Thanks,

Kathy Shock
Payroll Administrator
Beacon Electric Company

SINCLAIR COMMUNITY COLLEGE

amusums

KZOZ/TO/OI: : weq uopendixg
s5cet5ts
NOSTIM NOYVV

peysiew ont juens to uotsiua

9140 10 Enens

Sinclair
Community
College

This is to certify that:

Aaron K Wilson

has fulfilled the terms of the apprenticeship agreement in accordance with the registered standards and requirements, with related instruction qud is herebprecognized and qualified as a journeyperson

Electrician
logether with all the rights, privileges and oppartunities which everywhere pertain thereto. In tertimmy 相herenf, the Ohio State Apprenticeship Council of the Ohio Department of Job and Family Services in cooperation with the Bureau of Apprenticestip and Training, U. \$ Department of Labor, do affix the Great Seal of the State of Ohio.

Ted Strickland

July 10, 2006

Aaron Wison
ABC Ohio Valley CEF
33 Greenwood Lane
Springboro, OH 45066
Dear Aaron,
On behalf of the National Center for Construction Education and Research, I congratulate you for successfully completing the NCCER's standardized craft training program.

As the NCCER's most recent graduate, you are a valuable member of roday's skilled construction and maintenance workforce. The skills that you have acquired through the NCCER craft training programs will enable you to perform quality work on construction and maintenance projects, promote tha image of thase industries and enhance your long-term career opportunities.

We encourage you to continue your education you advance in your construction career. Please do not hesitate to contact us for information regarding our Management Education and Safety Programs or if we can be of any assistance to you.

Enclosed please find your certificate, transcript and wallet card. If you have any Guestiont regatding your credentials, contact the Registry Department at 352-334-0911. Once again, congratulations on your accomplishments and best wishes for a successful career in the construction and maintenance industries.

Sincerely,
Dmalles. Whyte
Donald E. Whyte
President, NCCER

Wilson
Last Name

Aaron

First Name

BBS Certification ID

Section 1: Check Interim Certification(s) Being Requested

$\left.\begin{array}{|l|l|l|l|l|}\hline \square \text { Building Official } & \square \text { Master Plans } \\ & \begin{array}{l}\text { Examiner }\end{array} & \begin{array}{l}\text { Building } \\ \text { Inspector }\end{array} & \boxed{X} \text { Inspector }\end{array}\right)$

Section 2: List Any Ohio License, Certificate, or Registration Held (Mark "T" If Trainee)

Description	Certificate Number	Date Received	
Architectural Registration			
P.E. Registration			
Res	Non-Res		
\square	\square	Building Official Certification	
\square	\square	Plans Examiner Certification	
\square	\square	Building Inspector Certification	
Building Plans Examiner Certification			
\square	\square	Mechanical Inspector Certification	
Mechanical Plans Examiner Certification			
Electrical Plans Examiner Certification			
Plumbing Plans Examiner Certification			
Fire Protection Inspector Certification			
Electrical Safety Inspector Certification			
Plumbing Inspector Certification			
Fire Safety Inspector Certification			
Fire Protection System Designer Certification			
Medical Gas Piping Inspector Certification			

Board of Building Standards

Wilson
Last Name

First Name

SECTION 3: Employment/Education

Formal Education	Date Graduated
Associated Builders and Contractors, Sinclair Community	$08 / 31 / 2007$
College	
Related Vocational or Technical Training	Years' Experience
Associated Builders and Contractors, Sinclair Community	$4+$
College	
U.S. Military construction experience (mos or other designation):	Years' Experience
Place of Employment:	Years' Employed
Applied Research Solutions, Cohen Brothers, Dayton Public	21
Schools, Fuyao Glass, Ohio Valley Elec, Beacon Elec, LVS	

Section 4: Applicants Requesting Medical Gas Inspector Certification

Attach proof of certification by an ASSE recognized third-party certifier in accordance with ASSE standard 6020.

Section 5: OBC Building Inspection Experience Performed for a BBS Certified Building Department

BBS Certified Building Department	BBS Certified Position/Title	Duties	Date of Service, Length of Time (MM/DD/YY)

Board of Building Standards
Wilson
Last Name

Application for Interim Certification, Building Department Personnel
Aaron
First Name

Section 6: Electrical Safety Inspector (ESI) - Specific Experience Qualifications
Applicants for Electrical Safety Inspector Only Must Complete This Item
Section 3783 of the Ohio Revised Code specifies that an applicant for a Certificate of Competency as an Electrical Safety Inspector must meet on of the following to qualify to take required examination. Please check the qualification that applies:

1. \square Have been a journeyman electrician or equivalent for four years, two of which were as an electrician foreman, and have had two years' experience as a building department electrical inspector trainee;
2. \square Have been a journeyman electrician or equivalent for four years and have had three years' experience as a building department electrical inspector trainee;
3. \square Have had for four years' experience as a building department electrical inspector trainee;
4. $⿴$ Have been a journeyman electrician or equivalent for six years;
5. \square Am a graduate electrical engineer and registered in the State of Ohio. Registration number:
6. \square Applicant authorizes all testing organizations including ICC to provide test results to the BBS.

Section 7: Experience (Do Not Substitute with Other Resumes).

Refer to Experience Requirements Listed in O.A.C. 4101:7-3-01 and O.R.C. 3783
Below, list the specific projects you worked on, and the specific work you performed, your typical duties for each project, and dates of this work. You must demonstrate that you have the required number of months (years) of actual, practical experience for the certification requested (see matrix).
Provide letters from certified inspectors, employers, or contractors verifying your experience. Submit copies of any certificates, diplomas, or licenses. Remove all personal information.
Section 7 cont.: Experience

List Each Construction Project AND Specific Type of Work Performed	Name of Employer, Contact, Address, Telephone Number	Project Time: From_To (MM/YY)
Example: Children's Hospital, Toledo Structural steel work on addition	Homer Steel and Trade 125 Anytown Street My City, OH, 45454 (419)555-1212	July 2013-May 2014 (10 months)
Various projects, Ohio/Kentucky area Installed lighting, receptacles, distribution systems, troubleshoot, conduit, new construction and remodel.	Beacon Electric 7815 Redsky Dr. Cincinnati, OH 45249 513-851-0711	April 2007-November 2008 (19 months)
Ohio district schools, Ohic Installed automated building systems, HVAC controls, troubleshoot, electrical distribution.	Low voltage specialists 291 West Bergey St. Wadsworth, OH 44281 330-336-5097	April 2009-November 2011 (31 months)
Various projects, Ohio Installed lighting, receptacles, distribution systems, troubleshoot, conduit, new construction, remodel, fire alarm systems.	Ohio valley electrical 4582 Comell Rd. Blue Ash, OH 45241 513-771-2410	December 2011June 2015 (56 months)
Total Experience on This Page (In Months):		106

Wilson
Last Name

Aaron

First Name

BBS Certification ID

Section 8: Personal History

1. Have you ever been convicted of any felony, or any crime involving moral turpitude?

If you answered "Yes" please explain below:
2. Have you served in the U.S. armed services? (If No, skip question 3)
\square Yes \square No
3. If YES, were you discharged under honorable conditions?

If you answered "No" please explain below:

\square

Section 9: Certification

I certify the information contained in this application is true and complete, and I understand that providing false information may be ground's for not granting certification or for immediate termination of certification at any point in the future, if granted. I authorize the investigation of all statements contained herein and release all parties from all liability for any damage that may resulf from furnishing the same to Onio Board of Building Standards. Falsification is a violation of section 2921.13 of the Ohio Revised Code and is punishable as a misdemeanor of the first degree.

Subscribed and duly sworn before me according to law, by the above named applicant this day sth of Avgust in the year 2022 at Fairborn, County of Greene and State of Ohio. Notary Public: Nerese C vourath

ARS

Mr. Aaron Wilson

is awarded the

 ARS Quarterly Awardfor his exemplary work and dedication to the NASIC and LGX missions. Mr. Wilson is an integral part of the LGX Execution Team where he serves as an electrical technician assessing existing power circuitry within a $650,000 \mathrm{sq} \mathrm{ft}$ national defense mission oriented facility. He is also responsible for hooking up all electric to facility workstations that are either reconfigured
or brand new. Mr. Wilson's role has been crucial to the overall success of the LGX team
providing in house electrical support. These efforts are directly responsible for projects remaining on or ahead of schedule, ensuring critical NASIC missions continue uninterrupted.

In addition to his technical successes, Mr. Wilson's professionalism and attitude exceeds customer expectations, bolstering team cohesion and effectiveness. He is always willing to go above and beyond his duties to assure that the mission is supported to fullest of his

Robin De La Voga
Program Manager

COHEN

Huly 26 th, 2022

To: Whom it may Concem

This letter is regarding the previous employment staus for Aaron Wilson, who was an employee with Cohen Brothers beginning on 04/09/2018. Aaron was employed as a journeyman electrician until his resignation on 3/15/2019, when given the opportunity to further his skills outside of our company.

Aaron was a dedicated worker during his tenure with Cohen and we would not hesitate in saying that he would be a welcome addition to any company willing to consider him for employmant.

Additional questions and information requests, including personal references and work history records can be sent to the human resources department at (513) 422-3696 ext.2396.

Sincerely,
Bxad Qohxand

Human Resources Manager
Cohen Brothers Recycling

December 28, 2017

Darryl A Holt
Associate Director
Dayton Public School
4280 James H McGee Blvd
Dayton, Ohio, 45417
daholt6905@gmail.com

Re: Aaron Wilson; The Letter of Reference

To Whom It May Concern:

Mr. Aaron Wilson has worked in a number of professional services from industrial maintenance to building/facilities maintenance for a time of 5 years. Mr. Wilson has also served as public servant with the Dayton Public Schools where he was able to demonstrate host technical knowledge in the area of electrical applications.

Throughout his employment, Mr. Wilson has conducted himself with highest professionalism, commitment and dependability. Mr. Wilson had begun his career by working in maintenance and manufacturing Industry where he worked in the position of an ELECTRICLAN. This was definitely an incredibly challenging and a highly skilled person, Mr. Wilson has exceeded the expectations and was given a glowing review by management and her co-workers.

I would strongly recommend Mr. Wilson for any role within the Dayton Public Schools, where he surely would be a valuable asset. His skills, his professionalism and his dedication are definitely outstanding.

Please feel free to contact me at any point of time if you have any further quires.

Mr. Darryl A. Holt
937-760-1555

Governmental Verification

This verification is system-generated with data provided directly by the employer. If any information is missing, it is because the employer did not provide this information for inclusion in the CCC Verify verification.

The information displayed below is an official and authentic employment verification report generated from CCCVerify.com. This verification is system-generated with data provided by the employer directly. If any information is missing, it is because the employer did not provide this information for inclusion in the CCCVerify verification.

Report Requested: 7/22/2022 9:07 AM
Report Tracking Number: 9e62ca3d-80c0-4870-82fe-e56dc10dc985

Data Source

Name: FUYAO GLASS AMERICA, INC
Division:
Address:
800 FUYAO AVENUE MORAINE OH 45439

Employee			
First Name:	AARON	Last Name:	WILSON
Employee Address:			
Employee SSN:			
Employee ID:	001070	Work Site:	DAYTON
Hire and Separation Date(s):			
Work Site	Most Recent Hire Date M		Most Recent Separation Date
DAYTON	6/29/2015 8/17		8/17/2017
First Hire Date:	6/29/2015	First Term Date:	8/17/2017
Work Status:	INACTIVE	Employment Type:	Full-time
Job Title:	ELECTRICAL TECHNICIAN	Current Length of Service:	2 Year(s), 2 Month(s)

Medical Benefils

Enrollment Type:	NA	Carrier:	NA
Employee Eligible:	NA	Employee Enrolled:	NA

Dental Benefits

Enrollment Type:	NA	Carrier:	NA
Employee Eligible:	NA	Employee Enrolled:	NA

Payroll

Pay:	29.00
Unused Vacation Amount:	NA
Unused Personal Amount:	NA
Unused Sick Pay Amount:	NA

Year-to-Date Income Details

8/4/22

To whom this may concern,
Aaron Wilson was a journeyman electrician here at Ohio Valley Electrical from December 2011 to June 2015.

Thanks,
Annie Klayer
HR Director

July 25, 2022

Mr. Anron Wilson:
In response to your request to verify your employment with Low Voltage Specialists, Inc., I have the following information:

Hire Date: March 31, 2010
Release Date: November 19,2011
Hosition Low Votnge Electrician
Total Hours Worked: 3468
Please let me know if you need any additional information or have any çuestions.
Sincerely

Ellen M. Tollett
President
\qquad
\qquad
Date: July 21, 2022

To
To Whom This May Concern

From:
Kathy Shock
Payroll Administrator

Re:

Employment dates for Aaron Wilson

Please be advised that Aaron worked for Beacon Electric Company as a Journeyman electrician from 4/30/2007 to 11/14/2008.

If you need additional information, please feel free to call at 513-851-0711 ext. 222.

Thanks,

Kathy Shock
Payroll Administrator
Beacon Electric Company

SINCLAIR COMMUNITY COLLEGE

Sinclair Community College upon the recommendation of the Engineering Division

This license shall be carried on your person while performing the listed activities.

Stata of Onlo

Department of Commerce Division of State Fire Marshal
ffit patitction licenise
AARON WILSON
54.57 .2855

Expiration Date: 10/01/2022

stemawe

This card shall be on your person whice performing listed activities.

This is to certify that:

Aaron K Wilson

has fulfilled the terms of the apprenticeship agreement in accordance with the registered standards and requirements, with related instruction and as herehy recognized and qualified as a journeyperson

Electriolan
together with all the rights, privileges and opportunities which everywhere pertain thereto.
3 tertimany \}uprenf, the Ohio State Apprenticeship Councill of the Ohio Department of Job and Family Services in cooperation with the Bureau of Apprenticesthip and Training, U.S. Department of Labor, do affix the Great Seal of the State of Ohio.

Ted Strickland
GOVERAOHOFOHIO

July 10, 2006

Aaron Wilson
ABC Ohio Valley CEF
33 Greenwood Lane
Springboro, OH 45066
Dear Aaron,
On behalf of the National Center for Construction Education and Research, I congratulate you for successfully completing the NCCER's standardized craft training program.

As the NCCCER's most recent graduate, you are a valuable member of today's skilled construction and maintenance workforce. The skills that you have acquired through the NCCER craft training programs will enable you to perform quality work on construction and maintenance projects, promote the image of these industries and enhance your long-term career opportunities.

We encourage you to continue your education as you advance in your construction career. Please do not hesitate to contact us for information regarding our Management Education and Safety Programs or if we can be of any assistance to you.

Enclosed please find your certificate, transcript and wallet card. If you have any questions tegatdits your credentials, contact the Registry Department at 352-334-0911. Once again, congratulations on your accomplishments and best wishes for a successful career in the construction and maintenance industries.

Sincerely,

Donald E. Whyte
Donald E. Whyte
President, NCCER

File Attachments for Item:

P-9 Young, Trenden - ESI
Cert ID: 8879
Current Certifications: None
Staff Notes: Received in June after ESIAC meeting: please review electrical experience. ESIAC Recommendations:

Committee Recommendation:

Board of Building Standards Young
Last Name

Application for Interim Certification, Building Department Personnel

Trenden

First Name
BBS Certification ID

Section 1: Check Interim Certification(s) Being Requested

\square Building Official	\square Master Plans Examiner	\square Building	Electrical Safety Inspector	Fire Protection Inspector
\square Building Plans Examiner	\squarePlumbing Plans Examiner	\square Mechanical	\square Electrical Plans	Fire Protection Plans Examiner
	\square Plumbing	Mechanical Inspector	Non-Residential Industrial Unit Inspector	

Section 2: List Any Ohio License, Certificate, or Registration Held (Mark "T" If Trainee)

Description	Certificate Number	Date Received	
Architectural Registration			
P.E. Registration			
Res	Non-Res		
\square	\square	Building Official Certification	
\square	\square	Plans Examiner Certification	
\square	\square	Building Inspector Certification	
\square	\square	Mechanical Inspector Certification	
Building Plans Examiner Certification			
Mechanical Plans Examiner Certification			
Fire Protection Plans Examiner Certification			
Electrical Plans Examiner Certification			
Plumbing Plans Examiner Certification			
Fire Protection Inspector Certification			
Electrical Safety Inspector Certification			
Plumbing Inspector Certification			
Fire Safety Inspector Certification			
Fire Protection System Designer Certification			
Medical Gas Piping Inspector Certification			

Board of Building Standards Young
Last Name

Application for Interim Certification, Building Department Personnel Trenden

First Name

BBS Certification ID

Section 3: Employment/Education

Formal Education	Date Graduated
Related Vocational or Technical Training	
Independent Electrical Contractors of Cincinnati (IEC)	Years' Experience
	2
U.S. Military construction experience (MOS or other designation):	
	Years' Experience
Place of Employment:	

Section 4: Applicants Requesting Medical Gas Inspector Certification

Attach proof of certification by an ASSE recognized third-party certifier in accordance with ASSE standard 6020.

Section 5: OBC Building Inspection Experience Performed for a BBS Certified Building Department

BBS Certified Building Department	BBS Certifled Position/Title	Duties	Date of Service, Length of Time (MM/DD/YY)

Young
Last Name

Trenden
First Name

BBS Certification ID
Section 6: Electrical Safety Inspector (ESI) - Specific Experience Qualifications
Applicants for Electrical Safety Inspector Only Must Complete This Item
Section 3783 of the Ohio Revised Code specifies that an applicant for a Certificate of Competency as an Electrical Safety Inspector must meet on of the following to qualify to take required examination. Please check the qualification that applies:

1. \square Have been a journeyman electrician or equivalent for four years, two of which were as an electrician foreman, and have had two years' experience as a building department electrical inspector trainee;
2. \square Have been a journeyman electrician or equivalent for four years and have had three years' experience as a building department electrical inspector trainee;
3. \square Have had for four years' experience as a building department electrical inspector trainee;
4. Have been a journeyman electrician or equivalent for six years;
5. \square Am a graduate electrical engineer and registered in the State of Ohio. Registration number:
6. \square Applicant authorizes ail testing organizations including ICC to provide test results to the BBS.

Section 7: Experience (Do Not Substitute with Other Resumes).

Refer to Experience Requirements Listed in O.A.C. 4101:7-3-01 and O.R.C. 3783

Below, list the specific projects you worked on, and the specific work you performed, your typical duties for each project, and dates of this work. You must demonstrate that you have the required number of months (years) of actual, practical experience for the certification requested (see matrix).
Provide letters from certified inspectors, employers, or contractors verifying your experience. Submit copies of any certificates, diplomas, or licenses. Remove all personal information.
Section 7 Cont.: Experience

List Each Construction Project AND Specific Type of Work Performed	Name of Employer, Contact, Address, Telephone Number	Project Time: From_To_ (MM/YY)
Example: Children's Hospital, Toledo Structural steel work on addition	Homer Steel and Trade 125 Anytown Street My City, OH, 45454 (419)555-1212	July 2013-May 2014 (10 months)

Board of Building Standards Application for Interim Certification, Building Department Personnel

List Each Construction Project AND Specific Type of Work Performed	Name of Employer, Contact, Address, Telephone Number	$\underset{\text { (MM/YY) }}{\text { Project Time: For }}$
Radius at the Banks - Electrical layout and prep	Valley Interiors 2203 Fowler Street Cincinnati, OH 45206 513.961.0400	From 11/14 To 09/15
Huhtamaki, Ohio - Installed, landed and tested fiber optics. - Installed power distribution units, IDF cabinets. - Installed, landed and tested CAT VI. - Installed conduit, motors and disconnects in for paper balers.	Bizcom 682 Tuxedo Place Cincinnati, OH 45206 513.961.7200	From 12/18 To 11/19 From 10/20 To 01/21 From 04/21 To 08/21
Festo - Installed electrical conduit, placed fire alarm wiring including smoke and siren wiring, and terminated fire electrical systems.	Bizcom 682 Tuxedo Place Cincinnati, OH 45206 513.961.7200	From 11/19 To 05/20
TQL - Installed electrical conduit, panels, switches, outlets, and lighting. - Installed and tested generator. - Managed electrical instalation crew.	Bizcom 682 Tuxedo Place Cincinnati, OH 45206 513.961 .7200	From 05/20 To 10/20
Amazon - Installed security systems and IDF cabinets.	Bizcom 682 Tuxedo Place Cincinnati, OH 45206 513.961.7200	From 01/21 To 02/21
Hutamaki, Alabama - Installed, landed, terminated and tested fiber optics	Bizcom 682 Tuxedo Place Cincinnati, OH 45206 513.961 .7200	From 03/21 To 04/21
	Total Experience on This Page (In Months):	49

Board of Building Standards

Young

Last Name

Application for Interim Certification, Building Department Personnel

Trenden

First Name

BBS Certification ID

Board of Building Standards
 Young
 Last Name

Application for Interim Certification, Building Department Personnel
Trenden
First Name

Section 8: Personal History

1. Have you ever been convicted of any felony, or any crime involving moral turpitude?

If you answered "Yes" please explain below:
2. Have you served in the U.S. armed services? (If No, skip question 3)Yes No
3. If YES, were you discharged under honorable conditions?Yes \qquad No
If you answered "No" please explain below:
\square

Section 9: Certification

I certify the information contained in this application is true and complete, and I understand that providing false information may be grounds for not granting certification or for immediate termination of certification at any point in the future, if granted. I authorize the investigation of all statements contained herein and release all parties from all liability for any damage that may result from furnishing the same to Ohio Board of Building Standards. Falsification is a violation of section 2921.13 of the Ohio Revised Code and is punishable as a misdemeanor of the first degree.

Signature of Applicant:

Subscribed and duly sworn before me according to law, by the above named applicant this day $\frac{21}{\text { Clement and State of Ohio }}$ in the year 2022 $\frac{\text { vermont county, County of }}{\text { Public Health }}$.

Notary Public. Winitarly \& 2 Ul em?

Apprentice Transcript

File Attachments for Item:

ER-1 2020 NEC Calculations Webinar Part 1 (Matthews Electrical Services)
BO, MPE, EPE, MechPE, ESI, BI, MI, RBO, RPE, RBI, RMI, RIUI (4 hours)
Staff Notes: Recommend addition of NRIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:

APPLICATION FOR Continuing Education Course Approval

Continuing education programs approved for education credit by the Ohio Board of Building Standards may be used for compliance with certification requirements related to code enforcement, plan review, and inspection responsibilities. The credit is to be used to renew the certifications issued by the Ohio Board of Building Standards pursuant to section 3781.10 (E) ORC.

Board of Building Standards 6606 Tussing Road, P.O. Box 4009
Reynoldsburg, Ohio 43068-9009
(614) 644-2613 Fax: (614) 644-3147
dic.bbs@com.state.oh.us
www.com.state.oh.us/dic/dicbbs.htm

course submitter: Henry Peter Matthews

Course Submitter: Henry Peter Matthews
Organization: Matthews Electrical Services
(Organzation/Company)
Address: 1203 McKinley Place

| City: Fostoria | (Inchlde Room Number, Suic, elc.) | Zip: 44830 |
| :--- | :---: | :--- | :--- |

E-Mail: hpmatthews@matthewselectrical.net
Telephone: 419-575-3488 Fax:
Course Sponsor:

COURSE [NFORMATION:

NOTE: The Board does NOT grant retroactive approval for courses presented prior to approval date.

Outline

1. Welcome
2. Webinar Rules and Expectations
3. Roll Call: Attendance and Introductions
4. Electricity Basics
5. Alternating Current and Direct Current
6. The metric system
7. Temperature conversions (Fahrenheit and Celsius)
8. Ohms Law, Kirchoff's Law
9. Series and Parallel connections
10. The Power Equation
11. The Power Triangle (VA, Watts, VARs, Power Factor)
12. Battery Math: Amps, Watts, Amp-hours, Watt-Hours
13. Sizing Generators: Kilowatts, Kilowatt-hours
14. Wire Sizes
15. Wire Ampacity Calculations and Derating Factors
16. Definition of Current Carrying Conductors
17. Wire conduit fill
18. Preview of Part II
a. Box Fill calculations
i. Outlet boxes
ii. Tap boxes, junction boxes, pull boxes
b. Service, load and demand Calculations
c. Motor calculations
d. Transformer calculations
e. Misc. calculations
19. Wrap Up
20. Dismissal

Henry Peter Matthews, PE, CPE, CESCP, PVA

Home Address
1203 McKinley Place
Fostoria, Ohio 44830
Email: hpmatthews@matthewselectrical.net
Home Phone: 419-701-7707
Cell Phone: 419-575-3488

Work Address
Marathon Petroleum Company
539 South Main Street
Findlay, Ohio 45840
Email: hpmatthews@marathonpetroleum.com
Office phone: 419-421-3423
Cell phone: 419-957-2110

Work Experience

$$
\begin{array}{ll}
\text { Marathon Petroleum Company, LP; Findlay, Ohio } & \text { June } 2006 \text { - Present } \\
\text { - Advanced Senior Engineer/Electrical Speciaiist } & \\
\text { - Electrical Engineering Supervisor - Terminal Engineering } & \\
\text { - Project Engineer - Major Projects } & \\
\text { - Electrical Designer - Retail Division } & \\
& \\
\text { Cooper Standard Automotive, Bowling Green, Ohio } & \text { July } 1993 \text { - June } 2006 \\
\text { - Plant Engineering Manager } & \\
\text { - Plant Electrical Engineer } &
\end{array}
$$

Toledo Engineering Company (consultant); Toledo, Ohio June 1989 - July 1993

- Electrical Drafter

Education

Bowling Green State University; Bowling Green, Ohio
Aug 2003
Masters of Business Administration
Pennsylvania State University; University Park, PA
Dec 1989
BS Electrical Engineering
Solar Energy International, Paonia, Colorado
Sept 2021
Solar PV Training
Owens Community College; Findlay, Ohio April 2017
Certificate: Introductory Welding

Penn Foster Career School

July 2010
Certificate: Plumbing

Penn Foster Career School

October 2004
Certificate: Electrician
Certifications Professional Engineer (PE): OH, MI, IN, KY, IL, WI
Photovoltaic Associate (PVA) by NABCEP
Certified Electrical Safety Compliance Professional (CESCP), NFPA
Certified Plant Engineer (CPE): Association for Facility Engineers
Building Operator Certification (BOC): Northwest Energy Efficiency Council

Ohio Electrical Contractor, Ohio Department of Commerce, License \#46972 Ohio Training Agency, Ohio Construction Industry Licensing Board, Agency \#48714
Ohio Training Agency, Ohio Board of Building Standards
Solar Energy International (SEI), Paonia, Colorado

- Solar Electric and Design and Installation Course, April 2021, 60 hours
- PV Systems Fundamentals (Battery-Based), June 2021, 40 hours
- Advanced PV System Design and the NEC, June-July 2021, 60 hours
- Comparing Battery Technologies, July 2021, 10 hours
- Tools and Techniques for Operations and Maintenance of PV Systems, 9/21, 40 HR

Affiliations

Institute of Electrical and Electronics Engineers (IEEE) - Senior Member International Association of Electrical Inspectors (IAEI)
 NFPA Section Member for Architects, Engineers and Building Officials Hilumination Engineering Society of North America (IESNA)
 API RP 545 former Co-Chair, American Petroleum Institute, Lightning Protection for Above Ground Storage Tanks (2017-2018)

Business Matthews Electrical Services, Owner
Ownership Designer Cuts Hair Salon, LLC; Co-owner

Biography

Henry has worked in the electrical, power, electronics, instrumentation, controls and communication fields for over 30 years. He earned his Bachelor of Science degree in Electrical Engineering from Penn State University in 1989. Henry worked as a consultant for Toledo Engineering Company in Toledo, Ohio as a drafter and field technician.

In 1993 he started working for Cooper Standard Automotive Company in Bowling Green, Ohio in 1993 as a Plant Electrical Engineer. He was then promoted to Plant Engineering Manager in 2000. During this time, he earned his Professional Engineering License in Ohio.

In 2003, Henry earned his MBA at Bowling Green State University.
In 2006, Henry joined Marathon Petroleum Company in Findlay, Ohio. He then went on to obtain his Professional Engineers license in Electrical Engineering for Michigan, Indiana, Illinois, West Virginia, Kentucky, Minnesota and Wisconsin. During his tenure at Marathon, Henry has had several roles including Electrical Design Engineer, Project Engineer and Electrical Supervisor. He is currently an Advanced Senior Engineer where he writes electrical standards for the company and conducts a community of practice for all the company's electrical engineers and safety professionals.

During his time at Cooper Standard Automotive and Marathon Petroleum, Henry developed a passion for teaching, learning and applying Electrical Construction Codes. At Cooper, he trained the entire non-electrical maintenance staff to perform basic electrical tasks.

At Marathon, Henry works with the Learning and Development Department to conduct multiple training sessions for new hires and seasoned engineers on various topics including Electrical Safety, Grounding and Bonding, Hazardous Area Location, Electrical Inspection, Motors, Lightning protection Static Electricity Mitigation, Reading and Understanding Electrical Diagrams, Programmable Logic Controllers and more.

Henry also works very closely with the Talent Acquisition Teams and visits numerous college campuses to deliver presentations on Engineering, Career Development, Networking and other topics.

Henry recently served as the Co-chair of the API Recommended Practice 545 Task Group for Lightning Mitigation for Above Ground Storage Tanks. In this role, he works with engineers, scientists and manufacturers from all over the world to evaluate the impacts of lightning and static electricity on metal above ground storage tanks.

His passion for teaching and Electrical Safety has motivated him to earn the Certified Electrical Safety Compliance Professional Certification (CESCP) from NFPA. He also regularly attends numerous electrical and safety conferences and training sessions conducted by NFPA, IEEE, API.

Previously, Henry was the President of the Fostoria, Ohio area Toastmasters team.
Henry is also a member of the International Association of Electrical Inspectors.

Henry also owns two small businesses:

Matthews Electrical Services - that performs mainly limited residential and small commercial electrical services and conducts training for licensed electricians in the state of Ohio.

Designer Cuts Hair Salon, LLC - Henry co-owns the beauty salon with his wife.

NEC Electrical Calculations Pt. 1

Matthews Electrical Services
Ohio Training Agency \#48714
Henry Matthews, PE, CPE, CESCP

1

3

2

WELCOME!

- Goals
- Review electrical theory
- Review important NEC Calculations
- Make session engaging
- Discussion
- Videos
- Polls
- Make 4 hours as productive as possible!

Disclaimer

Disclaimer \#2

- I don't know everything!
- It will be IMPOSSIBLE to learn all the important calculations in 4 hours!
- But we'll try to cover as much as possible
- The views and opinions presented in this class are those of Matthews Electrical Services and not necessarily those of the various entities the presenter represents or has previously or currently works for.
- The material used in this class is based on documented publiclyavailable information (NFPA, OSHA, IEEE etc.)
- The interpretation of this material is based on the presenters
experience and training of the subject matter.

7

2017 and 2020 NEC

Ugly's Electrical References

www.NFPA.org (Link)

Mike Holt's Illustrated Guide to Electrical Exam Preparation 2017

9

Mike Holt Videos

- Are All Terminals Rated 75 degree C [110.14(C)(1)(a)]
- https://www.youtube.com/embed/SUjDUvQMTss
- Branch Circuit Conductor Sizing [210.20]
- https://www.youtube.com/embed/tS4vibW55Cc
- Conductor sizing based on terminal rating [110.14(C)]
- https://www.youtube.com/embed/k7d03Tic6LE
- Feeder Conductor sizing [215.2]
- https://www.youtube.com/embed/ItJOYNOZ4wA
- How Do I Size an LB [110.3(B)]
- https://www.youtube.com/embed/2GoOuGb2Kdg

Mike Holt Videos

Mike Holt Videos

- Pull and Junction Boxes, 4 AWG and Larger [314.28]
- https://www.youtube.com/embed/olwTdmOC1FA
- Feeder Taps [240.21(B)(1)
- https://www.youtube.com/embed/uJRSrB4E7dY
- Raceway sizing [300.17 and Annex C]
- https://www.youtube.com/embed/ruceLol9g.w
- Receptacle Outlets, Number on a dwelling circuit [220.14(I)
- https://www.youtube.com/embed/s4EuinOEsRY

Other information

- OCILB (Ohio Construction Industry Licensing Board)
- IAEI (International Association of Electrical Inspectors)

13

Agenda

- Basic math review
- Electrical Theory review
- Basic electrical components (resistors, capacitors, inductors)
- Basic electrical circuits
- Voltage drop
- Single phase/3 phase power
- Conduit fill
- Outlet box fill

14

Fractions

Recommendations for This

Course

Fractions to Decimal

- Examples
- $1 / 2=1 \div 2=0.50$
- $3 / 8=3 \div 8=0.375$
- $11 / 16=11 \div 16=0.6875$

Quiz:

- Convert the following fraction to a decimal: 3/16
A. 0.1875
B. 0.237
C. 1.875
D. 0.321
- Answer: A
- $3 \div 16=0.1875$

18

Decimals

Rounding

- Usually applies to decimals to get at a number that's easier to work with
- Can round up or round down
- Example: 10.123
- How do we round to the nearest one-hundredth?
- $10.1 \underline{2} 32$ is in the hundredth space
- Look at the number in the thousandths place: 3
- If it is 5 or higher, round UP
- If it is 4 or less, round DOWN
- Since 3 is less than 5, round DOWN
- Means drop the 3
- 2 stays the same
- Result is 10.12
-1,111.11111
$\rightarrow 100,000$ ths

Rounding

- Usually applies to decimals to get at a number that's easier to work with
- Can round up or round down

Percentages

- Percentage to Decimal:
- Divide percent by 100:
- $50 \%=50 / 100=0.5$
- $23.4 \%=23.4 / 100=0.234$
- $167 \%=167 / 100=1.67$
- Or move decimal point two places to the left:
- 50% : $50.0 \Rightarrow .50=.5$
- 23.4\%: $23.4 \rightarrow 0.234$
- 167% : $167.0 \rightarrow 1.67$

Using Percentages

- Example:
- We have a wire with an ampacity (current-carrying capacity) of 20 amps . We need to increase it by 150%. What ampacity wire should we be using?
- $20 \times 150 \%=20 \times 1.50=30$
- Answer: new wire should have ampacity of 30 amps

Using Multipliers

- Convert \% to decimal. Result will be multiple
- Example: 125% 1.25
- 1.25 is the multiplier
- Example: An overcurrent protection device (circuit breaker or fuse) must be sized no less than 125% of the continuous load. If the load is 80A, the overcurrent protection device will have to be sized no smaller than what size?
- Answer: $80 \mathrm{~A} \times 1.25=100 \mathrm{~A}$

Squaring a Number

- Squaring a number means multiplying it by itself.
- This comes in handy when calculation area (wire for example)
- Example: What is the square of 9 ?
- Answer: $9 \times 9=81$
- What is the square of 4.25 ?
- Answer: $4.25 \times 4.25=18.06$
\qquad

Reciprocals

- To obtain a reciprocal of a number, divide the number by 1
- For example:
- What is the reciprocal of 80% ?
- First convert percent to a decimal: $0.80=0.8$
- Divide 0.8 by $1=1 / 0.8=1.25$
- If you want to change this back to a $\%$, then multiply by 100 - $1.25 \times 100=125 \%$

Where Would We Do This?

- Calculating area of a room
- Comparing pizza sizes
- And many more
- Example: What is the area of a room that is 10 feet wide by 10 feet long?
- Answer: $10 \times 10=10^{2}=100$

Where Would We Do This?

- Example: What's the area of a 6 -inch diameter pizza vs a 12 -inch pizza
- Answer:
- Diameter refers to a circle
- Area of a circle $=\Pi \times r^{2}, \quad \Pi=3.14159$
- The radius is $1 / 2$ of the diameter:
- Radius $=6 / 2=3$ inches for 6 " pizza
- Radius $=12 / 2=6$ inches for $12^{\prime \prime}$ pizza
- Area of $6^{\prime \prime}$ pizza: $3.14 \times 3^{2}=3.14 \times 9=28.26$ in 2 (square inches)
- Area of $12^{\prime \prime}$ pizza: $3.14 \times 6^{2}=3.14 \times 36=113.04 \mathrm{in}^{2}$ (square inches)
- 113.04/28.26 = 4
- The 12 inch pizza is 4 times larger!

30

Ohms Law

- Voltage $=$ Current \times Resistance
- $V=1 \times R$
- Can also be written as...
- $E=I \times R$ (E stands for electromotive force)

33

Kirchoff's Laws

- Second Low (Voltage)
- The total voltage applied to any closed circuit path is always equal to the sum of the voltage drops in that path
- Or
- The algebraic cum fo all the voltages encounterd in any loop equals zero

35

36

37

38

Sum of the Loads Equals the Sum of the Voltage Source
$120 \mathrm{~V}_{\text {source }}=$ voltage drop across wire (12 V) and voltage drop across the load (108 V) $120 V_{\text {source }}=12+108$

Using Larger Wire (Lower Resistance)

1.32 V

Voltage across load $=1 \times \mathrm{R}=13.2 \mathrm{~A} \times 9 \mathrm{ohms}=118.8 \mathrm{~V}$
118.8 V

Notice that smaller wire results in less voltage drop across the wire and more voltage to the
load

Check:
Source: 120 V
Wire + Load: $1.32 \mathrm{~V}+118.8 \mathrm{~V}=120.12 \mathrm{~V}$ slight variation due to rounding

Voltage Drop "Recommendations"

- Not an NEC requirement
210.19 Conductors - Minimum Ampacity and Size.
(A) Branch Circuits Not More Than 600 Volts.

Informational Note No. 1: See 310.14 for ampacity and temperature limitations of conductors.

Informational Note No. 2: See Part II of Article 430 for minimum rating of motor branch-circuit conductors.
Informational Note No. 3 : Conductors for branch circuits as defined in Article $\mathbf{1 0 0}$, sized to prevent a voltage drop exceeding 3 percent at the farthest outtet of power, heating, and lighting loads, or combinations of such loads, and where the maximum total voltage drop on both feeders and branch circuits to the farthest outlet does not exceed 5 percent, provide reasonable efficiency of operation. See informational Note No. 2 of $\underline{\underline{1} 5.2(A) \text { (A).(1) for voltage drop on feeder conductors. }}$

Voltage Drop Quiz

- If the resistance of \#12 stranded coated copper wire is 2.05 ohms $/ 1000 \mathrm{ft}$, what is the resistance of 50 ft . of the wire
- Answer:
- 2.05 ohms $/ 1000 \mathrm{ft} \times 50 \mathrm{ft}=(2.05 \times 50) / 1000=102.5 / 1000=0.1025$ ohms

Voltage Drop Quiz

- Using the answer from the previous quiz...
- Is this voltage drop acceptable for a 120 volt circuit?
- Find percent voltage drop:
- Voltage drop wire/Voltage drop of source =
- 2.05/120 = 0.01708
- To change to a percentage, multiply by 100
- $0.01708 \times 100=1.70 \%$
- This is less than 3% (branch circuit), therefore it is acceptable i.e., \#12 wire is ok

215.2 Minimum Rating and Size

(A) Feeders Not More Than 1000 Volts.

Informational Note No. 1: See Examples D1 through D11 in Informative Annex D.
Informational Note No. 2: Conductors for feeders, as defined in Article $\mathbf{1 0 0}$, sized to prevent a voltage drop exceeding
3 percent at the farthest outlet of power, heating, and lighting loads, or combinations of such loads, and where the
maximum total voltage drop on both feeders and branch circuits to the farthest outlet does not exceed 5 percent, will provide reasonable efficiency of operation.

Informational Note No. 3: See $\underline{\underline{210.19(A)}}$, Informational Note No. 4, for voltage drop for branch circuits.

47

Cross Sectional Area of Wire

Required for calculating conduit fill, box fill etc.

Cross sectional area include the conductor and the insulation

See NEC Chapter 9, Table 5

Cross Sectional Area of Wire

Cross sectional area include the conductor and the insulation

See NEC Chapter 9, Table 5

```
V = I x R
```

```
V = I x R
```

Volts = Amps \times Resistance
$\mathrm{P}=\mathrm{V} \times \mathrm{I}$
Power $=$ Volts x Amps
Watts = Volts x Amps

49

51

Example:

12 V solar module
Rated 100 watts
$\mathrm{P}=\mathrm{V} \times \mathrm{I}$
$I=P / V$
I = 100 watts/ 12 volts
$\mathrm{I}=8.33 \mathrm{Amps}$

50

52

Unit Conversions

- 1 GW (gigawatt) $=1,000,000,000$ watts $=1$ Billion Watts
- Watts/1,000,000,000 = GW
- Example: 2,000,000,000 watts/1,000,000,000= 2 GW
- 1 MW (megawatt) $=1,000,000$ watts
- Watts/1,000,000 = MW
- Example: 6,000,000/1,000,000 = 6 MW
- Example: 9 MW = 9 x 1,000,000 = 9,000,000 watts

Key Conversions

- 1 inch = 2.54 centimeters
- Example: How many centimeters is 4 inches?
- Answer: $4 \times 2.54=10.16$ centimeters (cm)
- $1 \mathrm{~cm}=0.3937$ inches
- Example: How many inches is 9 centimeters (cm)?
- Answer: $9 \times 0.3937=3.5433$ inches

Unit Conversions

- 1 kW (kilowatt) = 1000 watts
- Watts/1000 = kW
- Example: 2000 watts/1000 $=2 \mathrm{~kW}$
- Example: $10 \mathrm{~kW}=10 \times 1000=10,000$ watts
- 1 MW (megawatt) $=1,000,000$ watts $=1$ million watts
- Watts $/ 1,000,000=\mathrm{MW}$
- Example: 6,000,000/1,000,000 = 1 MW
- Example: $9 \mathrm{MW}=9 \times 1,000,000=9,000,000$ watts

Key Conversions

- 1 inch $=25.4$ centimeters
- Example: How many millimeters (mm) is 4 inches?
- Answer: $4 \times 25.4=101.6$ centimeters (cm)
- $1 \mathrm{~mm}=0.03937$ inches
- Example: How many inches is 9 millimeters (mm)?
- Answer: $9 \times 0.03937=0.35433$ inches

Current vs Impact on the Human Body

Current in miliamps (ma)	Probable Effect on the Human Body
$1 \mathrm{ma}(.001 \mathrm{amp})$	Perception level. Slight tingling sensation. Still dangerous under certain conditions.
$5 \mathrm{ma}(.005 \mathrm{amp})$	Slight shock felt; not painful but disturbing. Avergage individual can let go. However, strong involuntary reactions to shocks in this range may lead to injuries.
$6 \mathrm{ma}-16 \mathrm{ma}(.006-.016) \mathrm{amps}$	Painful shock, begin to lose muscular control. Commonly referred to as the freezing current or "let-go" range.
$17 \mathrm{ma}-99 \mathrm{ma}(0.017-.099)$ amps	Extreme Pain, respiratory arrest, severe muscular contractions. Individual cannot let go. Death is possible.
$100 \mathrm{ma}-2000 \mathrm{ma}(.1-2 \mathrm{amps})$	Ventricular fibrillation (uneven, uncoordinated pumping of the heart.) Muscular contraction and nerve damage begins to occur. Death is likely.
greater than $2000 \mathrm{ma}(2 \mathrm{mpss})$	Cardiac arrest, internal organ damage, and severe burns. Death is probable

Note: GFCIs are set just below the "let-go" range (6 ma)
Iron Man 3 : https://www.youtube.com/watch?v=RRt3VROjXP0

- $\mathrm{V}=\mathrm{I} \times \mathrm{R}$ (volts = current \times resistance)
- $I=V / R$
- $\mathrm{R}=\mathrm{V} / \mathrm{I}$

Electrical 101

$$
2
$$

61

63

Temperature Conversions

- Celsius (C) and Fahrenheit (F)
- C to $\mathrm{F}=\mathrm{C} \times 9 / 5+32$
- Example: $40^{\circ} \mathrm{C}=$
- $40 \times 9=360$
- $360 / 5=72$
- $72+32=104^{\circ} \mathrm{F}$
- F to $\mathrm{C}=(\mathrm{F}-32) \times 5 / 9$
- Example: $104^{\circ} \mathrm{F}=$
- $104-32=72$
- $72 \times 5=360$
- $360 / 9=40^{\circ} \mathrm{C}$

64

65

67

66

Single Phase, 120 V Circuit
Two Wire (L1, Neutral)
transformer

Single Phase (Split Phase) 120V/240V Circuit Three Wire (L1, L2, Neutral)

70

Three Phase WYE (Y) CIRCUIT

phases of transformer or generator are 120 degrees apart

Why Does the Phase to Phase and Phase to Line Voltage Differ by a Factor of 1.73? Answer: Trigonometry (triangles) And pythagorean theorem *

Cosine of Angle = Adjacent//Hypotenuse
Cosine $(30)=104 / \mathrm{x}$
$\mathrm{X}=104 /$ Cosine (30)
$\mathrm{X}=104 / 0.866=120.09$
$x=104 / 0.866=120.09$
$208 / 120=1.733$
Also!
$480 / 277=$
$480 / 277=1.73$
$4160 / 2400=1.73$
And so on and so on
Also! $\sqrt{3}=1.73$

HINT! To convert from 3-phase to single phase, divide voltage by 1.73

74

Three Phase WYE (Y) CIRCUIT

76

Three Phase WYE (Y) CIRCUIT
Three Phase WYE (Y) CIRCUIT 277V/480V, 4-WIRE

Three Phase Delta Circuit, 120/240V
Three Phase Delta Circuit, 120/240V
4-Wire (Line 1, Line 2, Line 3, Neutral)

$\mathrm{C}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}$
$A^{2}=C^{2}-B^{2}$
$A=\sqrt{C^{2}-B^{2}}$
$A=\sqrt{240^{2}-120^{2}}$
$A=\sqrt{57600-14,400}$
$A=\sqrt{43,200}$
$A=207.84=208$

81

82

Why Do We Put Ground Rods in Parallel?

To lower resistance, add ground rods (electrodes) in paralle

Volume

- The volume of an enclosure equals the length x width x height of the enclosure
- The result is in cubic inches, cubic centimeters, cubic feet, cubic yards etc.
- It is written as $\mathrm{in}^{3}, \mathrm{~cm}^{3}, \mathrm{ft}^{3}, \mathrm{yds}^{3}, \mathrm{~m}^{3}$ etc.

85

Circuits

Voltage

- Can be written as V or E
- V stands for Voltage after Alessandro Volta
- E stands for Electromotive Force or EMF

- Both are the same
- "Electrical Pressure"
- Can be AC or DC

Frequency

- AC Voltage and Current has a frequency
- In the United States, it is 60 Hz or 60 cycles per second
- Sinusoidal waveform crosses 0,120 times a second

Circuits

Current

- Expressed as " I "
- I originally referred to Intensity
- Measured in Amps or Amperes after Andre-Marie Ampere
- Can be AC or DC
- Flow of charges in a circuit
- "Pushed or Pulled" by voltage
- Higher voltages result in higher current flows
- Must have a closed circuit to flow
- If a break in circuit occurs, flow of current will stop or find leakage paths
- Current will return to its source, not the earth (except lightning)

Resistance

- Resistance (R) is measured in ohms
- Named after Georg Ohm
- Ω (Omega) is the symbol for resistance
- Can be thought of providing resistance to the flow of current
- Low resistance promotes higher current flow
- High resistance restricts current flow
- Require higher amps to energize load
- Ex: larger diameter wire has lower resistance than smaller diameter wire
- High resistance can be a source of heating
- Most loads have significant resistive component

97

98

Parallel Resistance

100

101

Parallel Resistance Shortcut

For Equal Resistances Only

$\mathrm{R}_{\mathrm{Tot}}=\frac{\mathrm{R}}{\mathrm{Num}}$ Number of Resistors
$\mathrm{R}_{\text {Tot }}=\frac{10}{2}=5 \Omega$

Hint: If 2 same-value resistors are in parallel, the total resistance is exactly half the value of one of the resistors

Parallel Resistance Shortcut

For Equal Resistances Only

$\mathrm{R}_{\mathrm{Tot}}=\mathrm{R}$
Number of Resistors
$R_{\text {Tot }}=\frac{10}{3}=3.33 \Omega$
3.33Ω
$\square{ }^{102}$
102

Hints for Resistors in Parallel

- The total resistance will always be lower than any one of the individual resistors
- The total resistance will always be lower than the value of the lowest resistor
- Resistance should always be positive. It may be a decimal, but it should be positive
- Guess the possible value of the total resistance below

Resistance (R) and Impedance (Z)

- Both are measured in ohms
- DC circuits only have resistance
- AC circuits have resistance (R), inductance (L) and capacitance (C)
- Both are used interchangeably in 60 Hz circuits because L and C are nearly 0 at this low frequency
- Impedance expressed as Z

Series and Parallel Resistance

$R 1=10 \Omega$

Impedance and Resistance

$Z=$ Impedance
$R=$ Resistance
$X_{L}=$ Inductive Reactance
$X_{C}=$ Capacitive Reactance
$\mathrm{X}_{\mathrm{L}}=$ Inductive Reactance
$\mathrm{X}_{\mathrm{C}}=$ Capacitive Reactance

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

- AC circuits have impedance (Z) consisting of resistance, inductance and capacitance
- In purely $D C$ circuits, $Z=R$, in other words
- In most situations where the frequency is 60 Hz and amps are less than 40 amps , the loads are mostly resistive
the inductive and capacitive reactances are small.
- In these cases, the impedance and resistance are nearly equal

Capacitance

- Capacitance is measured in Farads after Michael Faraday
- Capacitors are noted by the character "C"
- Defined as the ability to store electric charge
- Units of capacitance are F (Farads), mF (milli Farads), $\mu \mathrm{F}$ (micro Farads), nF (nano Farads), pF (pico Farads) etc.

109
110

Inductance

- Basically anything that has a coil has inductance

Inductors and Inductance

- Examples: solenoids, motors, transformers etc.

Impedance and Resistance

- Wire has resistance, inductance and capacitance
- Therefore it has impedance (Z)
- Helps create magnetic fields

115

114

116

117

Voltage Drop of Wire

$\mathrm{I}=\mathrm{V} / \mathrm{R}$
$I=120 /\left(R_{\text {wire }}+R_{\text {load }}\right)$
$\mathrm{I}=120 /(0.2+10)=120 / 10.2=11.764 \mathrm{Amps}$
Voltage drop across wire $=1 \times \mathrm{R}_{\text {wire }}$
$V_{\text {drop }}=11.764 \times 0.2=2.35 \mathrm{~V}$

100 ft . total wire length
$0.1 \mathrm{ohms}+0.1 \mathrm{ohms}=0.2 \mathrm{ohms}$

\%Voltage Drop of Wire

100 ft . total wire length
0.1 ohms +0.1 ohms $=0.2$ ohms
$\mathrm{I}=\mathrm{V} / \mathrm{R}$
$\mathrm{I}=120 /\left(\mathrm{R}_{\text {wire }}+\mathrm{R}_{\text {load }}\right)$
$I=120 /(0.2+10)=120 / 10.2=11.764 \mathrm{Amps}$
Voltage drop across wire $=1 \times R_{\text {wire }}$
$V_{\text {drop }}=11.764 \times 0.2=2.35 \mathrm{~V}$
$\%$ Voltage Drop of Wire $=2.35 \mathrm{~V} / 120 \mathrm{~V}=0.0195$ Convert to a percentage: $0.0195 \times 100=1.95 \%$ Compare:
1.95\% less than recommended 3% from branch Circuit breaker to load.

Therefore Voltage Drop is acceptable

\%Voltage Drop of Wire - Longer Wire

Chapter 9, Table 8:

- 2 ohms $/ 1000 \mathrm{ft}$
- $1000 \mathrm{ft} \times 2 \mathrm{ohms} / 1000 \mathrm{ft}=2$ ohms
$\mathrm{I}=\mathrm{V} / \mathrm{R}$
$I=120 /\left(R_{\text {wire }}+R_{\text {load }}\right)$
$I=120 /(2+10)=120 / 12=10 \mathrm{Amps}$
Voltage drop across wire $=1 \times \mathrm{R}_{\text {wire }}$
$V_{\text {drop }}=10 \times 2=20 \mathrm{~V}$
$\%$ Voltage Drop of Wire $=20 \mathrm{~V} / 120 \mathrm{~V}=0.167$
Convert to a percentage: $0.167 \times 100=16.67 \%$
Compare
16.67% more than recommended 3% from branch circuit breaker to load.

Therefore Voltage Drop is not acceptable
Try larger wire and/or shorter runs

124

125

Conduit Fill

One Conductor

Two Conductors

Three or More Conductors

Conduit Fill

- Table 1 of Chapter 9 in the NEC lists the maximum fill of conduit based on the size of the conductors it contains

Chapter 9, Table 1		
Maximum Percent Conduit Fill		
Number of Conductors	Percent Fill Permitted	
1 Conductors	53%	
2 Conductors	31%	
3 or more conductors	40%	

Conduit Fill

- All conductors counted, including equipment grounding conductors,
bonding conductors and neutrals (Table 9, note 3)
- Different than when calculating "ampacity" where EGC and some neutrals not counted.
- Exception for conduit nipples 24 inches or less (Table 9, note 4).
- 60\% fill allowed

129

131

Quiz

- What's the cross sectional area of permitted conductor fill for a trade size $1^{\prime \prime}$ EMT conduit that is 30 inches long containing four conductors?
- Answer:
- We know that since it is not a nipple ($24^{\prime \prime}$ or less) and it has more than 3
conductors, the 40% max fill limit is applicable
- Check Chapter 9, Table 4 for EMT, 40% column
- 0.346 sq. inches

Quiz (Alternative Solution)

- What's the cross sectional area of permitted conductor fill for a trade size $1^{\prime \prime}$ EMT conduit that is 30 inches long containing four conductors?
- Answer:
- We know that since it is not a nipple ($24^{\prime \prime}$ or less) and it has more than 3 conductors, the 40% max fill limit is applicable
- Check Chapter 9, Table 4 for EMT, Total Area column (last column)
- $0.864^{\prime \prime}$ for total area of $1^{\prime \prime}$ EMT
- $0.864 \times 40 \%=0.864 \times 0.40=0.3456=0.346$ sq. inches

Table

$$
\begin{aligned}
& \text { C. } 1 \text { - Electrical Metallic Tubing (ENT) } \\
& { }^{C .1}(1)^{*}-\text { Electrical Metalic Tubing (EMT) } \\
& \text { C2(A)t- Electical Nonnetallic Tubing (ENT) } \\
& \text {. } 2(\mathrm{~A})^{*}-\text { Electricical Nonmetallic Tubing } \\
& 3 \text {-hexble Metal Condur (fMG) } \\
& 4 \text { - } \\
& \text { C. } 4 \text { - Iniermediaie Metal Condur (IMC) } \\
& \text { Cand } \\
& \text { 6. } 5 \text { - Lquiditight Flexble Nonmetallic Conduit (Type LFNC-A) } \\
& \text { C.5(A)* - Liquiditght Fexible Nonmetallic Condut (Type L-FNC-A) } \\
& \text { C. } 6 \text { - Liquiditight Fexxbil Nonmetallic Conduit (Type L-FNC:B) } \\
& \text { C. } 6(A)^{*}-\text { - Liquididight Fexible Nonmetallic Conduit (Type LFNC:B) } \\
& \text { C. } 7 \text { - Liquúdigh F Fexible Nonmeatlicic Conduit (Type L LFNC.C) } \\
& \text { c.7(A) - Lquaudight flexible Nonmetallic Condurt (Type L-FNC.C) } \\
& \text { C. } 8 \text { - Lquaudight Flexbbe Metal Condut (LFMC) } \\
& \text { C. } 9 \text { - Rigid Meal Conduit (RMC) }
\end{aligned}
$$

Conduit Fill - Same Size Conductors

- If all of the conductors are the same size, use Annex C in the NEC to size conduit fill

Conduit Fill Example - Same Size Conductors

- What is the minimum size EMT conduit required for the following conductors?
- (5) \#12 THHN conductors

137

Conduit Fill Example -Different Size Conductors

- What is the minimum size Schedule 40 PVC conduit required for the following conductors?

Conduit Fill Example - Same Size Conductors

- According to Chapter 9, table 4 table for THHN wire in EMT conduit, a maximum of 9 conductors can be installed in 1/2" conduit
- Since 5 is less than $9,1 / 2^{\prime \prime}$ conduit is the minimum size conduit that can be used

138

Conduit Fill Example -Different Size
 Conductors

- Refer to Chapter 9, Table 5 for THHN Wire

141

Conduit Fill Example -Different Size
 Conductors

- Refer to Chapter 9, Table 4 (PVC), 40% fill
- Total Area of Conductors $=2.6162$ in 2
- Area of conduit used for wiring must be larger than $2.6162 \mathrm{in}^{2}$ in 40% column

Conduit Fill Example -Different Size Conductors

- Refer to Chapter 9, Table 5 for THHN Wire
- (1) $500 \mathrm{THHN}=0.7073 \mathrm{in}^{2} \times 3$ conductors $=2.1219 \mathrm{in}^{2}$
- (1) $250 \mathrm{THHN}=0.3970 \mathrm{in}^{2} \times 1$ conductors $=0.3970 \mathrm{in}^{2}$
- (1) $3 \mathrm{THHN}=0.0973 \mathrm{in}^{2} \times 1$ conductors $=0.0973 \mathrm{in}^{2}$

Total Area of Conductors $=2.6162 \mathrm{in}^{2}$

144

Conduit Fill Example -Different Size Conductors

Conduit Nipple Conduit Fill

- Refer to Chapter 9, Table 4 (PVC), 40% fill
- Total Area of Conductors $=2.6162$ in 2
- Area of conduit used for wiring must be larger than 2.6162 in 2 in 40% column
- $2.907 \mathrm{in}^{2}$ is larger than $2.6162 \mathrm{in}^{2}$, so 3 in . conduit is the minimum size that can be used

Conduit Nipple Conduit Fill Example

- What's the minimum trade size RMC nipple required for three, $3 / 0$ THHN conductors, one 1 THHN conductor, and one 6 THHN conductor?

Conduit Nipple Conduit Fill Example

- Since the raceway is a nipple less than 24 inches in length, it can be filled up to 60\%
- Use Table 5 in Chapter 9 to obtain area of THHN conductors

149

151

Conduit Nipple Conduit Fill Example

- $1-3 / 0 \mathrm{THHN}=0.2679 \mathrm{in}^{2} \times 3$ conductors $=0.8037 \mathrm{in}^{2}$
- 1 - \#1 THHN $=0.1562 \mathrm{in}^{2} \times 1$ conductor $=0.1562 \mathrm{in}^{2}$
- $1-\# 6$ THHN $=0.0507 \mathrm{in}^{2} \times 1$ conductor $=0.0507 \mathrm{in}^{2}$
- Total area of conductors $=1.0106 \mathrm{in}^{2}$
- Refer to Table 4 in Chapter 9 (RMC)

150

Conduit Nipple Conduit Fill Example

- Total area of conductors $=1.0106 \mathrm{in}^{2}$
- Refer to Table 4 in Chapter 9 (RMC)
- 60% fill of a $1-1 / 4^{\prime \prime}$ conduit $=0.916$ in $^{2} \Rightarrow$ Too small!
- 60% fill of a $1-1 / 2^{\prime \prime}$ conduit $=1.2453 \mathrm{in}^{2}$
- Therefore $1-1 / 2^{\prime \prime}$ conduit is min . size allowed

152

155

Outlet Box Fill (NEC 314.16)
All Conductors Same Size

- Insulation type does not matter
- Use Table 314.16(A) to:
- Determine the number of conductors permitted in the outlet box
- Determine outlet box size required for the given number of conductors
- Outlet Box Sizing [314.16(A)]
- https://www.youtube.com/embed/bVQO7B EWHg

156

157

Box With Dividers - Marked [314.16(A)]

- Use volume on barriers to calculate volume if marked

Box With Dividers - Not Marked

- Use $1 / 2$ in ${ }^{3}$ if metallic
- Use 1 in 3 if nonmetallic

Box Fill Calculations: 314.16(B)

- Not included in calculations:
- Locknuts
- Bushings
- Each space within a box with a barrier shall be calculated separately

Conductor Fill: 314.16(B)

- Not counted:
- Switches
- Receptacles
- Luminaire studs or hickeys
- Cable clamps
- Equipment grounding conductors

Conductor Fill: 314.16(B)(1)

- Counted once:
- Each conductor that originates outside the box and terminates or is spliced within the box
- Each conductor that passes through the box without splice or termination
- Counted twice:
- Each loop or coil of unbroken conductor
- Not counted:
- No part of which leaves the box

162

Table 314.16(B) Volume Allowance Required per Conductor

Conductor AWG	Volume Cubic Inches
18	1.50
16	1.75
14	2.00
12	2.25
10	2.50
8	3.00
6	5.00

167

166

168

169

Device Yoke Wider Than Two Inches

171

170

172

173

Box Fill and Box Size Selection

- Determine number of \#14 AWG conductors

- $14 / 3$ NM	$3-14$ AWG conductors
- $14 / 2$ NM	$2-14$ AWG conductors
- Switch	$2-14$ AWG conductors
- Cable clamp	$1-14$ AWG conductors
- Receptacle	$2-14$ AWG conductors
- Equipment Grounding Conductor	$1-14$ AWG conductors
- Total	$\mathbf{1 1 - 1 4}$ AWG conductors

174

Box Fill and Box Size Selection

- Determine the volume of the \#14 AWG conductors
- Reference Table 314.16(B)
- 14 AWG: 2 cubic inches each
- 2 cubic inches $\times 11$ conductors $=$
- Total Volume

in Header	Table 314.16(B)Volume Allowance Required per Conductor	
Size of Conductor (AWG)	Free Space Within Box for Each Conductor	
18	$\mathbf{c m}^{\mathbf{3}}$	in. $^{\mathbf{3}}$
16	24.6	1.50
14	28.7	1.75
12	32.8	2.00
10	36.9	2.25
8	41.0	2.50
6	49.2	3.00

179

Box Fill and Box Size Selection

- Select the outlet box from table 314.16(A)
- A 4 -inch $x 2-1 / 8$ in. square box can accommodate a maximum of 15 , \#14 AWG conductors
- A 4-inch x 1-1/2 inch square box can only accommodate 10 conductors. This is not enough to contain the calculated 11 conductors
- Therefore, the $4 \times 2-1 / 8 \mathrm{in}$. square box is the minimum that can be used

180

181

Box Fill and Box Size Selection

- Determine the volume of the \#14 AWG conductors
- Reference Table 314.16(B)
- 14 AWG: 2 cubic inches each
- 2 cubic inches $\times 5$ conductors $=$ 10.00 cubic inch
-12 AWG: 2.25 cubic inches each
- 2.25 cubic inches $\times 6$ conductors $=\quad 13.50$ cubic inch
- Total Volume 23.50 cubic inch

Box Fill and Box Size Selection

- Determine number of \#14 AWG conductors
- 14/3 NM 3-14 AWG conductors
- Switch
- Total
2-14 AWG conductors
- Determine number of \#12 AWG conductors
-12/2 NM 2-12AWG conductors
- Cable clamp

1-12 AWG conductors

- Receptacle 2-12 AWG conductors
- Equipment Grounding Conductor 1-12 AWG conductors
- Total

6-12 AWG conductors

in Header	Table 314.16(B)Volume Allowance Required per Conductor	
Size of Conductor (AWG)	Free Space Within Box for Each Conductor	
18	$\mathbf{c m}^{\mathbf{3}}$	in. $^{\mathbf{3}}$
16	24.6	1.50
14	28.7	1.75
12	32.8	2.00
10	36.9	2.25
8	41.0	2.50
6	49.2	3.00
	81.9	5.00

Box Fill and Box Size Selection

- Select the outlet box from table 314.16(A)
- A 4 -inch $\times 2-1 / 8$ square box: 30.30 cubic inches
- Is large enough to contain the 23.50 cubic inches calculated above.

186

189

190

..- $\begin{aligned} & \text { Contact instructor at hpmatthews@matthewselectrical.net for any questions or } \\ & \text { comments }\end{aligned}$
$\underset{\substack{\circ \\ 0}}{\circ}$ e Make sure you completely sign out of webinar after the next slide!

192

File Attachments for Item:

ER-2 2020 NEC Calculations Webinar Part 2 (Matthews Electrical Services)
BO, MPE, EPE, MechPE, BI, MI, RBO, RPE, RBI, RMI, RIUI (4 hours)
Staff Notes: Add NRIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:

APPLICATION

 FOR Continuing Education Course ApprovalContinuing education programs approved for education credit by the Ohio Board of Building Standards may be used for compliance with certification requirements related to code enforcement, plan review, and inspection responsibilities. The credit is to be used to renew the certifications issued by the Ohio Board of Building Standards pursuant to section 3781.10(E) ORC.

6606 Tussing Road, P.O. Box 4009 Reynoldsburg, Ohio 43068-9009 (614) 644-2613 Fax: (614) 644-3147 dic.bbs@com.state.oh.us
www.com.state.oh.us/dic/dicbbs.htm

COURSE Submitter: Henry Peter Matthews

Course Submitter: Henry Peter Mathews

Address: 1203 McKinley Place
City: (lasiinde Room Number, Sunice, elc.)
E-Mail: npmathews@matthewselectrical.net
Telephone: 419-575-3488
Fax:
Course Sponsor:

ELECTRICAL CALCULATIONS Part 2
 Outline

1. Welcome
2. Webinar Rules and Expectations
3. Roll Call: Attendance and Introductions
4. Review of Part 1
5. Box Fill calculations
a. Outlet boxes
b. Tap boxes, junction boxes, pull boxes
6. Tap rules
7. Service, load and demand Calculations
8. Motor calculations
9. Transformer calculations
10. Misc. calculations
11. Wrap Up
12. Dismissal

Henry Peter Matthews, PE, CPE, CESCP, PVA

Home Address
1203 McKinley Place
Fostoria, Ohio 44830
Email: hpmatthews@matthewselectrical.net
Home Phone: 419-701-7707
Cell Phone: 419-575-3488

Work Address

Marathon Petroleum Company
539 South Main Street
Findlay, Ohio 45840
Email: hpmatthews@marathonpetroleum.com
Office phone: 419-421-3423
Cell phone: 419-957-2110

Work Experience

Marathon Petroleum Company, LP; Findlay, Ohio

- Advanced Senior Engineer/Electrical Specialist
- Electrical Engineering Supervisor - Terminal Engineering
- Project Engineer - Major Projects
- Electrical Designer - Retail Division

Cooper Standard Automotive, Bowling Green, Ohio

- Plant Engineering Manager
- Plant Electrical Engineer

Toledo Engineering Company (consultant); Toledo, Ohio

- Electrical Drafter

Education

Bowling Green State University; Bowling Green, Ohio
Masters of Business Administration
Pennsylvania State University; University Park, PA
BS Electrical Engineering
Solar Energy International, Paonia, Colorado
Sept 2021
Solar PV Training
Owens Community College; Findlay, Ohio
Certificate: Introductory Welding
Penn Foster Career School
July 2010
Certificate: Plumbing
Penn Foster Career School
October 2004
Certificate: Electrician
Aug 2003

Dec 1989

April 2017

Professional Engineer (PE): OH, MI, IN, KY, IL, WI
Photovoltaic Associate (PVA) by NABCEP
Certified Electrical Safety Compliance Professional (CESCP), NFPA
Certified Plant Engineer (CPE): Association for Facility Engineers
Building Operator Certification (BOC): Northwest Energy Efficiency Council

Affiliations

Business	Matthews Electrical Services, Owner
Ownership	Designer Cuts Hair Salon, LLC; Co-owner

Biography

Henry has worked in the electrical, power, electronics, instrumentation, controls and communication fields for over 30 years. He earned his Bachelor of Science degree in Electrical Engineering from Penn State University in 1989. Henry worked as a consultant for Toledo Engineering Company in Toledo, Ohio as a drafter and field technician.

In 1993 he started working for Cooper Standard Automotive Company in Bowling Green, Ohio in 1993 as a Plant Electrical Engineer. He was then promoted to Plant Engineering Manager in 2000. During this time, he earned his Professional Engineering License in Ohio.

In 2003, Henry earned his MBA at Bowling Green State University.

In 2006, Henry joined Marathon Petroleum Company in Findlay, Ohio. He then went on to obtain his Professional Engineers license in Electrical Engineering for Michigan, Indiana, Illinois, West Virginia, Kentucky, Minnesota and Wisconsin. During his tenure at Marathon, Henry has had several roles including Electrical Design Engineer, Project Engineer and Electrical Supervisor. He is currently an Advanced Senior Engineer where he writes electrical standards for the company and conducts a community of practice for all the company's electrical engineers and safety professionals.

During his time at Cooper Standard Automotive and Marathon Petroleum, Henry developed a passion for teaching, learning and applying Electrical Construction Codes. At Cooper, he trained the entire non-electrical maintenance staff to perform basic electrical tasks.

At Marathon, Henry works with the Learning and Development Department to conduct multiple training sessions for new hires and seasoned engineers on various topics including Electrical Safety, Grounding and Bonding, Hazardous Area Location, Electrical Inspection, Motors, Lightning protection Static Electricity Mitigation, Reading and Understanding Electrical Diagrams, Programmable Logic Controllers and more.

Henry also works very closely with the Talent Acquisition Teams and visits numerous college campuses to deliver presentations on Engineering, Career Development, Networking and other topics.

Henry recently served as the Co-chair of the API Recommended Practice 545 Task Group for Lightning Mitigation for Above Ground Storage Tanks. In this role, he works with engineers, scientists and manufacturers from all over the world to evaluate the impacts of lightning and static electricity on metal above ground storage tanks.

His passion for teaching and Electrical Safety has motivated him to earn the Certified Electrical Safety Compliance Professional Certification (CESCP) from NFPA. He also regularly attends numerous electrical and safety conferences and training sessions conducted by NFPA, IEEE, API.

Previously, Henry was the President of the Fostoria, Ohio area Toastmasters team.

Henry is also a member of the International Association of Electrical Inspectors.
Henry also owns two small businesses:
Matthews Electrical Services - that performs mainly limited residential and small commercial electrical services and conducts training for licensed electricians in the state of Ohio.

Designer Cuts Hair Salon, LLC - Henry co-owns the beauty salon with his wife.

NEC Electrical
Calculations Pt. 2

Matthews Electrical Services
Ohio Training Agency \#48714
Henry Matthews, PE, CPE, CESCP

MATTHEWS ELECTRICAL SERVICES

Webinar Rules

- Attendee must be present the entire time (except breaks)
- Turn webcam on after breaks and at end of class
- Instructor will periodically check for presence of all attendees
- Mute microphone at all times
- Prevents distraction during webinar
- Instructor may activate participant microphone if verbal response is needed

Breaks (New!)

- 5-minute break every 45 minutes
- Schedule
- 7:00 AM Start
- 7:45 Break 1
- 8:30 Break 2
- 9:15 Break 3
- 10:00 Break 4
- 10:45 Break 5

4

Disclaimer

Disclaimer \#2

- I don't know everything!
- It will be IMPOSSIBLE to learn all the important calculations in 4 hours!
- But we'll try to cover as much as possible
- The views and opinions presented in this class are those of Matthews Electrical Services and not necessarily those of the various entities the presenter represents or has previously or currently works for.
- The material used in this class is based on documented publiclyavailable information (NFPA, OSHA, IEEE etc.)
- The interpretation of this material is based on the presenters experience and training of the subject matter.

NEC Electrical Calculations

Resources Used

2017 and 2020 NEC

Ugly's Electrical References

www.NFPA.org (Link)

Mike Holt's Illustrated Guide to Electrical Exam Preparation 2017
Ecmweb.com online magazine
Ecmag.com online magazine

9

Mike Holt Videos

- Motor Branch Conductor Sizing [430.22(A)]
- https://www.youtube.com/embed/buK7LTOyvwE
- Motor Full Load Current (FLC): 430.6(A)(1)
- https://www.youtube.com/embed/Sic1uoua3og
- Motor Full Load Amps - Nameplate (FLA): 430.6(A)(2)
- https://www.youtube.com/embed/2cprO8ZdT1U
- Outlet Box Sizing [314.16(A)]
- https://www.youtube.com/embed/bVQO7B EWHg
- Overhead Conductor Clearances [225.18]
- https://www.youtube.com/embed/R9DHjGObyKw

Mike Holt Videos

- Are All Terminals Rated 75 degree C [110.14(C)(1)(a)]
- https://www.youtube.com/embed/SUjDUvQMTss
- Branch Circuit Conductor Sizing [210.20]
- https://www.youtube.com/embed/tS4vibW55Cc
- Conductor sizing based on terminal rating [110.14(C)]
- https://www.youtube.com/embed/k7d03Tic6LE
- Feeder Conductor sizing [215.2]
- https://www.youtube.com/embed/ItJOYNOZ4wA
- How Do I Size an LB [110.3(B)]
- https://www.youtube.com/embed/2GoOuGb2Kdg

Mike Holt Videos

- Pull and Junction Boxes, 4 AWG and Larger [314.28]
- https://www.youtube.com/embed/olwTdmOC1FA
- Feeder Taps [240.21(B)(1)
- https://www.youtube.com/embed/uJRSrB4E7dY
- Raceway sizing [300.17 and Annex C]
- https://www.youtube.com/embed/ruceLol9g.w
- Receptacle Outlets, Number on a dwelling circuit [220.14(I)
- https://www.youtube.com/embed/s4EuinOEsRY

Other information

- OCILB (Ohio Construction Industry Licensing Board)
- IAEI (International Association of Electrical Inspectors)

Recommendations for This
 Course

16

Part I Review

- Basic math review
- Electrical Theory review
- Basic electrical components (resistors, capacitors, inductors)
- Basic electrical circuits
- Voltage drop
- Single phase/3 phase power
- Conduit fill
- Outlet box fill

Pull Boxes, Junction Boxes, and Conduit Bodies

- For conductors \#4 AWG and larger, pull boxes, junction boxes and conduit bodies must be sized in accordance with 314.28 of the NEC

314.28(A)(1) Straight Pulls

The length of the box must be at least 8 times the trade size of the largest raceway

314.28(A)(2) U-Pulls

$A=(6 \times 3)+3, A=21$ in

The distance must be at least 6 times the largest raceway, plus the sum of the other raceways on the same wall and row.

314.28(A)(2) Multiple Rows of Conduit

25

26

28

27

Conductor Properties

- All conductors have a certain amount of resistance
- When current flows through wire, this resistance creates heat
- The heat can damage the wire insulation
- If the insulation is damaged, short circuits and other negative events can occur
- If the wire is too small to handle the available current, the wire could overheat and cause fires
- Short circuits
- Open circuits
- Toxic fumes
- Equipment malfunction
- And much more...

32

Conductor Insulation Identification

Letter	Description
No H	60 degree C insulation rating
H	75 degree C insulation rating
HH	90 degree C insulation rating permitted in dry locations
-2	90 degree C insulation rating permitted in wet locations
N	Nylon outer cover
T	Thermoplastic Insulation
R	Rubber Insulation
X	Cross-linked polyethylene insulation
U	Underground
W	Permitted in Wet or Damp locations

Equipment Terminal Rating -110.14(C)

- Conductors must be sized using their ampacity from the insulation temperature rating column of Table 310.15(B)(16) 2017 NEC that corresponds to the lowest temperature rating of any terminal, device, or conductor of the circuit.

34

36

35

Equipment 100A and Less [110.14(C)(1)(a)(1)]

- Unless otherwise listed and/or marked...
- Conductors terminating on equipment terminals must be sized using the 60 deg C temperature column of Table 310.15(B)(16)

Equipment 100A and Less, Conductor Sized to $60^{\circ} \mathrm{C}$ [110.14(C)(1)(a)(1)]
Equipment terminals rated 100A or less and pressure connector terminals for 14 AWG through 1 AWG conductors, must have the conductor sized to the $60^{\circ} \mathrm{C}$ temperature rating listed in Table $310.15(\mathrm{~B})(16)$. Figure 6-3

39

Equipment Over 100A, Conductor Sized to $75^{\circ} \mathrm{C}$
[110.14(C)(1)(b)(1)]
Terminals for equipment rated over 100A and pressure connector ter-
Terminals Rated $90^{\circ} \mathrm{C}$, Conductor Sized to $90^{\circ} \mathrm{C}[110.14(\mathrm{C})(2)]$
The $90^{\circ} \mathrm{C}$ ampacity column of Table 310.15 (B)(16) can be used for separately installed connectors if the conductor and terminals are rated at least $90^{\circ} \mathrm{C}$. Figure 6-6 according to the $75^{\circ} \mathrm{C}$ temperature rating listed in Table 310.15(B)(16). Figure 6-5

Conductors terminating on separately installed connectors can be sized to the $90^{\circ} \mathrm{C}$ column of Table $310.15(\mathrm{~B})(16)$ if
the conductors and connectors are rated at least $90^{\circ} \mathrm{C}$.

Figure 6-6
40

42

Example 1

- According to Table 310.15(B)(16), what size THHN conductor is required to supply a 150A feeder?

43

45

Example Continued

- 1/0 THHN is good for 170A at 90 deg C, BUT
- Terminals are only rated for 75 deg C
- Therefore 75 deg C column must be used
- $1 / 0 \mathrm{THHN}$ at $75 \mathrm{deg} \mathrm{C}=150 \mathrm{~A}$
- $1 / 0$ will work!

Example 2 Continued

-300A is a continuous load, therefore multiply $300 \times 1.25(125 \%)=375 \mathrm{~A}$

- 400 kcmil wire at 90 deg . C is rated at 380A
- Since terminals are rated for 90 deg. C, we can use this column
- Can a 400A circuit breaker or fuse protect wire rated for 380A?
- Normally no, but the next size up rule per NEC 240.4(B) applies here

Example 2

- What size XHHW copper conductor can be used to interconnect 90 deg C rated power distribution blocks that are protected by a 400A overcurrent protection device serving a 300A continuous load?

47

(B) Overcurrent Devices Rated 800 Amperes or Less.

The next higher standard overcurrent device rating (above the ampacity of the conductors being protected) shall be permitted to be used, provided all of the following conditions are met:
(1) The conductors being protected are not part of a branch circuit supplying more than one receptacle for cord-and-plug-connected portable loads.
(2) The ampacity of the conductors does not correspond with the standard ampere rating of a fuse or a circuit breaker without overload trip adjustments above its rating (but that shall be permitted to have other trip or rating adjustments)
(3) The next higher standard rating selected does not exceed 800 amperes.

50

Example 2 Continued

- Answer: 400 kcmil, rated 380 amps at 90 deg C is acceptable

Motor Terminals, Conductors Sized to 75 deg C 110.14(C)(1)(a)(4)

For motors marked with

 Design letters B, C, or D, conductors having an insulation rating of 75 deg C or higher can be used, provided the ampacity of such conductors doesn't exceed the 75 deg C ampacity.

54
"Next Size Up" for Overcurrent Devices

- Overcurrent Devices rated 800A and less [240.4(B)]
- Next size up ALLOWED (if all conditions met)
- Overcurrent Devices rated over 800A [240.(C)]
- Next size up NOT ALLOWED!
- Conductors must be protected by overcurrent device not exceeding the ampacity of the conductor
- For example: a conductor rated for 1250 Amps cannot be protected by a 1600 amp CB. It must be protected by a 1200 amp or less $C B$ or fuse.

Overcurrent

Protection
Article 240
General rule:

Conductors must be protected from overcurrent at the point where they receive their power supply in accordance with their ampacities

55

57

Conductor Ampacity , Correction and Adjustment

- Adjustments for temperatures outside of 78-86 deg F
- More than 3 current-carrying conductors

58

Current-Carrying Conductors (Exemptions)

- Grounding and Bonding conductors
- Neutral conductors under the following conditions are not counted per 310.15(B)(5)
- Neutral conductors that only carry the unbalanced current from other conductors of the same circuit
- In other words, if the circuit is balanced (single phase or three phase) and it contains a neutral, then the neutral is not counted.

Important Tip!

When correcting or adjusting conductor ampacity, the ampacity is based on the temperature insulation rating of the conductor as listed on table $310.15(B)(16), N O T$ the temperature rating of the terminal

59

61

62

Table 310.15(B)(2)(a)

Ambient Temperature ${ }^{\circ} \mathrm{F}$	Ambient Temperature ${ }^{\circ} \mathrm{C}$	Correction Factor $75{ }^{\circ} \mathrm{C}$ Conductors	Correction Factor $90^{\circ} \mathrm{C}$ Conductors
50 or less	10 or less	1.20	1.15
51-59 deg F	$11-15$ deg C	1.15	1.12
60-68 deg F	16-20 deg C	1.11	1.08
$69-77$ deg F	$21-25$ deg C	1.05	1.04
78-86 deg F	26-30 deg C	1.00	1.00
87-95 deg F	31-35 deg C	0.94	0.96
96-104 deg F	36-40 deg C	0.88	0.91
105-113 deg F	41-45 deg C	0.82	0.87
114-122 deg F	46-50 deg C	0.75	0.82
123-131 deg F	51-55 deg C	0.67	0.76
132-140 deg F	56-60 deg C	0.58	0.71
141-149 deg F	61.65 deg C	0.47	0.65
150-158 deg F	66-70 deg C	0.33	0.58
159-167 deg F	71-75 deg C	0.00	0.50
168-176 deg F	$76-80 \mathrm{deg} \mathrm{C}$	0.00	0.41
177-185 deg F	$81-85 \mathrm{deg} \mathrm{C}$	0.00	0.29

Example when neutral is included as a current-carrying conductor

- Three phase, circuit containing, 3 hot conductors, a neutral and equipment grounding conductor
- One phase, for whatever reason, is not energized
- Then the neutral is not balanced and will be carrying more than the unbalanced current.
- In this case, the neutral will be counted as a current-carrying conductor

Ambient Temperature 69 to 770F	Ambient Temperature 78 to $860 \mathrm{~F}\left(30^{\circ} \mathrm{C}\right)$	Ambient Temperature 87 to 950F
$90^{\circ} \mathrm{C}$ Table Ampacity Correction Factor = 104\% (1.04)	$90^{\circ} \mathrm{C}$ Table Ampacity Correction Factor = 100\% (1.00)	$90^{\circ} \mathrm{C}$ Table Ampacity Correction Factor = 96\% (0.96)
30 Table Amps $\times 1.04$ Ampacity $=31.20 \mathrm{~A}$	$\begin{aligned} & 30 \text { Table Amps } \times 1.00 \\ & \text { Ampacity }=30 \mathrm{~A} \end{aligned}$	30 Table Amps $\times 0.96$ Ampacity $=28.80 \mathrm{~A}$
Ambient Temperature Below $6^{\circ} \mathrm{F}$, Ampacity is Higher	Ambient Temperature 86 $^{\circ} \mathrm{F}$, Ampacity Remains the Same	Ambient Temperature Over $86^{\circ} \mathrm{F}$, Ampacity is Lower

66

Example

- What is the ampacity of \#6 THWN-2 conductors when it is installed in conduit $1 / 2$ from the roof surface when the outdoor temp is 96 deg F?
- THWN-2 conductors are rated 75A at 90 deg C per Table 310.15(B)(16)
- Correction factor for mounting on roof less than $7 / 8^{\prime \prime}$ is:
- 96 deg F +60 deg F = 156 deg F
- Per Table 310.15(B)(2)(a), 156 deg F has a correction factor of 0.58 for 90 deg F conductors
- 75A $\times 0.58=43.5 \mathrm{~A}$
- The \#6 THWN-2 wire has new ampacity of 43.5A!

Rooftop Temperature Adder [310.15(B)(3)(c)]

- Raceways and Cables Exposed to Sunlight on Rooftops
- Where raceways or cables are exposed to direct sunlight and located less than 7/8 inches above the roof, a temperature adder of 60 deg $\mathrm{F} / 33 \mathrm{deg} \mathrm{C}$ is to be added to the outdoor temperature to determine the ambient temperature for the application of the ampacity correction in accordance with Table 31015(B)(2)(a).

Table 310.15(B)(2)(a)

Ambient Temperature ${ }^{\circ} \mathrm{F}$	Ambient Temperature ${ }^{\circ} \mathrm{C}$	Correction Factor $75{ }^{\circ} \mathrm{C}$ Conductors	Correction Factor $90^{\circ} \mathrm{C}$ Conductors
50 or less	10 or less	1.20	1.15
$51-59 \mathrm{deg} \mathrm{F}$	$11-15 \mathrm{deg} \mathrm{C}$	1.15	1.12
60-68 deg F	$16-20$ deg C	1.11	1.08
69-77 deg F	$21-25$ deg C	1.05	1.04
78-86 deg F	26-30 deg C	1.00	1.00
87-95deg F	31-35 deg C	0.94	0.96
96-104 deg F	36-40 deg C	0.88	0.91
105-113 deg F	41-45 deg C	0.82	0.87
114-122 deg F	$46-50 \mathrm{deg} \mathrm{C}$	0.75	0.82
123-131 deg F	$51-55 \mathrm{deg} \mathrm{C}$	0.67	0.76
132-140 deg F	56-60 deg C	0.58	0.71
141-149 deg F	$61-65$ deg C	0.47	0.65
150-158 deg F	66-70 deg C	0.33	0.58
159-167 deg F	$71-75 \mathrm{deg} \mathrm{C}$	0.00	0.50
168-176 deg F	$76-80 \mathrm{deg} \mathrm{C}$	0.00	0.41
177-185 deg F	$81-85 \mathrm{deg} \mathrm{C}$	0.00	0.29

ambient temperature adjustment contained in Table direct sunlight on or above rooftops.
is based on the distance
btween the race distance
cable and the roof.
$310.15(\mathrm{~B})(3)(\mathrm{C})$ is added to the outdoor ambient temperature
les Exposed to Sunlight on Roofs 310.15(B)(3)(c)
\qquad

70

Table 310.15(B)(3)(a) Conductor Ampacity Adjustment for More Than Three Current-Carrying Conductors

Number of Conductors	Adjustment
$4-6$	0.80 or 80%
$7-9$	0.70 or 70%
$10-20$	0.50 or 50%
$21-30$	0.45 or 45%
$31-40$	0.40 or 40%
41 and above	0.35 or 35%
The number of conductors is the total number of conductors, including spare conductors, adjusted in accordance with $310.15(B)(5)$ and time. tB)	

Four or More Current-Carrying Conductors

310.15(B)(3)(a)

- Applies where four or more current-carrying conductors are installed in a raceway or 24 inches long
- Requires ampacity adjustment per Table 310.15(B)(3)(a)

73

Example

- Multiple conductor adjustment (more than 3 conductors in raceway)
- Ambient Temperature correction
- Rooftop adjustment

Example

- What is the ampacity of four current-carrying 12 THWN-2 conductors installed in a raceway on the rooftop with an ambient temp of 94 deg F ?

75

Example

- Look for key words
- What is the ampacity of four current-carrying 12 THWN-2 conductors installed in a raceway on the rooftop with an ambient temp of 94 deg F?
- THWN-2 is rated for 90 deg C per Table 310.15(B)(16)
- \#12 wire at 90 deg C is rated for 30A
- Adjustment 1: for 4 Conductors \square Table 310.15(B)(3)(a) for more than 3 conductors
- Use 0.80 adjustment factor for 4 conductors

Example

- Adjustment 2: Conductors on rooftop installed 7/8" or less from surface:
- Add 60 deg F to ambient temp
- Ambient temp is 94 deg $F: 94+60=154 \mathrm{deg} F$
- Use table 310.15(B)(2)(a) Ambient Temp Correction
- For 154 deg F , adjustment is $\underline{0.58}$ for 90 deg C conductors
- Combining adjustments: $30 \times 0.80 \times 0.58=13.92 \mathrm{~A}$
- May be necessary to run larger wire and conduit or simpler yet, install conduit at least 1 inch above the roof!

Overcurrent Protection and Conductor Sizing 210.20(A)

- Branch circuit overcurrent protection devices must have a rating of not less than $\mathbf{1 2 5}$ percent of the continuous loads plus $\mathbf{1 0 0}$ percent of the non-continuous loads
- Continuous Load: A load where the maximum current is expected to continue for $\mathbf{3}$ hours or more

81

Feeder Overcurrent Protection [215.2]

- Feeder overcurrent protection devices must have a rating of not less than 125% of the continuous loads, plus 100% of the non-continuous loads.

Feeder Conductor sizing [215.2]
https://www.youtube.com/embed/ItJOYNOZ4wA

Feeder Tap Rules!

Feeder Tap Rules

- Tap: A conductor, other than a service conductor (feeder or branch circuit), that has overcurrent protection rated higher than normally allowed in 240.2
- General rule: Conductors shall be protected from overcurrent at the point where they receive power. This is not always possible for some conductors - like taps

86

The tap is permitted at any point on the load side of the feeder OCPD. The "next size up" rule in Sec. 240.4(B) is not permitted for feeder tap conductors.
(1) Feeder Tap Not Over 10 Feet. Tap conductors up to 10 ft long are permitted when they comply with the following

(1) Tap conductors have an ampacity equal to or greater than:

a. The calculated load per Art. 220, and
b. The rating of the OCPD or the equipment supplied by the tap conductors
(2) The tap conductors are not permitted to extend beyond the equipment they supply.
(3) The tap conductors are installed within a raceway.
(4) Tap conductors that leave the enclosure where the tap is made must have an ampacity of at least 10% of the rating of the OCPD that protects the feeder.

Informational Note: If a tap supplies a panelboard, the tap conductors must terminate in an OCPD per Sec. 408.36.

87

10-ft tap rule

The length of your tap determines which rules to apply to it. When a tap is not over 10 ft , you determine the tap conductor size using the $10-\mathrm{ft}$ tap rule. There are four rules for $10-\mathrm{ft}$ taps, but it's the first of those four $[$ Sec. $240.21(B)(1)(1)]$ you follow when sizing the tap conductors:

The ampacity of the tap conductors must be at least the:

1. Combined calculated loads on the circuits supplied by the tap conductors [Sec. 240.21(B)(1)(a)], and
2. Rating of the equipment containing an OCPD supplied by the tap conductors or (at least the) rating of the OCPD of the tap conductors.

Example 1

Question: What size $10-\mathrm{ft}$ tap conductor is needed from a 400A circuit breaker to supply a 200A panelboard if the terminals are rated $75^{\circ} \mathrm{C}$, as shown in Fig. 2?
(a) $1 / 0$ AWG
(b) $2 / \mathrm{o}$ AWG
(c) $3 / \mathrm{o}$ AWG
(d) $4 / \mathrm{o} \mathrm{AWG}$

Solution: Ten Percent of 400A $=40 \mathrm{~A}$ minimum conductor ampacity permitted
3/o AWG is rated 200A at $75^{\circ} \mathrm{C}$ [Sec. $110.14(\mathrm{C})(1)(\mathrm{b})(2)$ and Table 310.16], which is greater than 10% of the rating of the 400 A OCPD.

Answer: (c) 3/o AWG

Example

Question: What size $10-\mathrm{ft}$ tap conductor is needed from a 400 A circuit breaker to supply a 150 A feeder disconnect if the terminals are rated $75^{\circ} \mathrm{C}$?
(a) $1 / 0$ AWG
(b) $2 / \mathrm{o} \mathrm{AWG}$
(c) $3 / 0$ AWG
(d) $4 / 0 \mathrm{AWG}$

Solution: Ten Percent of $400 \mathrm{~A}=40 \mathrm{~A}$ minimum conductor ampacity permitted
$1 / \mathrm{o}$ AWG is rated 150 A at $75^{\circ} \mathrm{C}$ [Sec. $110.14(\mathrm{C})(1)(\mathrm{b})(2)$ and Table 310.16], which is greater than $10 \% \mathrm{o}$ the rating of the 400A OCPD.

Answer: (a) 1/o AWG

Feeder taps must have an ampacity of not less than 10% of the rating of the feeder overcurrent protective device.

Example 3

Question: What size 10-ft tap conductor is needed from a 400A circuit breaker to supply a 30 A feeder disconnect if the terminals are rated $75^{\circ} \mathrm{C}$?
(a) 8 AWG

Feeder tap conductors must have an ampacity not less than $1 / 3$ the rating of the feeder overcurrent protective device.

94

25-ft tap rule

Tap conductors up to 25 ft long are permitted when they comply with the following:
(1) The tap conductor has an ampacity of at least $\sqrt{3}$ the rating of the OCPD that protects the feeder.
(2) The tap conductors terminate in an OCPD and have an ampacity equal to or greater than the rating of the OCPD.

Notice how this differs from the 10-ft tap rule. It's shifted from being based on the load the tap feeds to being based on the rating of the feeder OCPD

Example 1

Question: What size $25-\mathrm{ft}$ tap conductor is needed from a 400 A circuit breaker to supply a 200 A panelboard if the terminals are rated $75^{\circ} \mathrm{C}$, as shown in Fig. 3 ?
(a) $1 / 0$ AWG
(b) $2 / 0$ AWG
(c) $3 / 0$ AWG
(d) 4/o AWG

Solution: The tap conductor must have a minimum rating of at least 133 A ($1 / 3$ the rating of the 400 A OCPD).
$3 / \mathrm{o} \mathrm{AWG}$ is rated 200 A at $75^{\circ} \mathrm{C}$ [Sec. $110.14(\mathrm{C})(1)(\mathrm{b})(2)$ and Table 310.16$]$, which is greater than $133 \mathrm{~A}(1 / 3$ the rating of the 400 A OCPD) and equal to the 200 A disconnect.

Answer: (c) 3/o AWG

Feeder tap conductors must have an ampacity not less than $1 / 3$ the rating of the feeder overcurrent protective device.

Example 2

Question: What size $\mathbf{2 5}$ - ft tap conductor is needed from a 400 A circuit breaker to supply a 150 A feeder disconnect if the terminals are rated $75^{\circ} \mathrm{C}$?
(a) $1 / 0$ AWG
(b) $2 / \mathrm{o} \mathrm{AWG}$
(c) $3 / \mathrm{o} \mathrm{AWG}$
d) $4 / \mathrm{o} \mathrm{AWG}$

Solution: The tap conductor must have a minimum rating of at least 133 A ($1 / 3$ the rating of the 400 A OCPD).

1/o AWG is rated 150 A at $75^{\circ} \mathrm{C}$ [Sec. $110.14(\mathrm{C})(1)(\mathrm{b})(2)$ and Table 310.16], which is greater than $133 \mathrm{~A}(1 / 3$ the rating of the 400A OCPD) and equal to the 150 A disconnect.

Answer: (a) 1/o AWG

Example 3

Question: What size $25-\mathrm{ft}$ tap conductor is needed from a 400A circuit breaker to supply a 30 A feede disconnect if the terminals are rated $75^{\circ} \mathrm{C}$.
(a) 3 AWG
(b) 2 AWG
(c) 1 AWG
(d) $1 / 0$ AWG

Solution: The tap conductor must have a minimum rating of at least 133 A ($1 / 3$ the rating of the 400 A OCPD).
$1 / \mathrm{o} \mathrm{AWG}$ is rated 150 A at $75^{\circ} \mathrm{C}$ [Sec. $110.14(\mathrm{C})(1)(\mathrm{b})(2)$ and Table 310.16$]$, which is greater than $133 \mathrm{~A}(1 / 3$ the rating of the 400A OCPD) and greater than the 30A disconnect

Answer: (d) 1/o AWG
Feeder tap conductors must have an ampacity not less than $1 / 3$ the rating of the feeder overcurrent protective device.

Outside feeder taps

Outside tap conductors can be of unlimited length if they comply with all of the following [Sec.
240.21(B)(5)]
(2) The outside tap conductors terminate in a single circuit breaker or a single set of fuses that limits the load to the ampacity of the conductors
(3) The tap's OCPD is part of the building feeder disconnect.

103

Modes of Motor Protection

- Short Circuit
- Very high levels of current from
- Ground faults
- Phase-to- phase faults
- Overload
- Lower levels of current from
- Gradual overheating due to
- High loads
- Unbalance
- Extreme temperatures
- Equipment malfunction or damage
- Multiple other causes

Modes of Motor Protection

- Short Circuit
- Circuit Breakers and fuses
- Overload
- Overload devices
- "Heaters"
- Overload relays

Article 430 Motors

- Challenges (continued)
- Safety: stopping, torque, speed control, guarding moving parts
- Lots of energy: inductive
- Produce heat
- Vibration: impacts connections and cabling
- Impacts power factor
- What is a motor running backwards?

Chapter 4: Equipment for General Use

- Article 430: Motors, Motor Circuits, and Controllers
- Part XIV. Tables

109

Motor Nameplate

Typical Motor Starting Curve

For general application:

- According to 430.6(A), the ampacity values given in the motor fullload current tables must be used to calculate the ampacity of motor branch-circuit conductors (for other than specific motors)
- Tables 430.248 and 430.250 are the full load currents (FLC) for most motors of normal torque values and common speeds
Motor Branch Circuit:
- A motor branch circuit includes all conductors between the branch-circuit protective device and the motor as shown above

Standard Method Load Calculations
 Article 220, Part III

- Article 220 allow two different methods of calculating residential loads

1. The standard method in Part III
2. The optional method in Part IV

- Methods are different and give different results
- Must use one or the other
- Rules from either can't be mixed together
- On exam, they will usually tell you which method to use

Procedure to Determine Feeder or Service Size for a Dwelling Unit Using Standard Method

1. General Lighting and General Use Receptacles, Small-Appliances and Laundry Circuits [Table 220.42]

- These loads will most likely not be operating all at the same time at full load
- Therefore the NEC permits a demand factor to be applied to the total connected load [220.52)

1. Determine Feeder Demand Load

A. Determine the total connected load for:

1) General lighting and receptacles at 3 VA per sq. ft [220.12]
2) Two small-appliance circuits at 1,500 VA [220.52(A)] and
3) One laundry circuit at 1,500 VA
B. Apply the Table 220.42 demand factors to the total connected load
C. Calculate the first 3000 VA at 100% demand. Calculate the remaining VA at 35% demand

121

124

Household cooking appliances rated over 1-3/4 kW can have the feeder and service calculated according to the demand factors of Table 220.55, including notes, 1, 2, and 3

125

126

Standard Method Load Calculations Example

- What size service is required for a 1,500 sq. ft. dwelling unit containing the following loads?

Equipment	Wattage (VA)
Dishwasher	$1,500 \mathrm{VA}$
Waste Disposer	$1,000 \mathrm{VA}$
Water Heater	$4,5000 \mathrm{~W}$
Dryer	$4,000 \mathrm{~W}$
Range	$14,000 \mathrm{~W}$
Air-Conditioning	$17 \mathrm{~A}, 240 \mathrm{~V}$
Electric Heating (one control unit)	$8,000 \mathrm{~W}$

Step 1. General Lighting and Receptacles

- 1500 sq. ft $\times 3 \mathrm{VA}=$
- Small appliance circuits: 1500 VA $\times 2=$
- Laundry circuit: 1500 VA x $1=$
- Total Connected Load
- Take first 3000 VA at 100% : $3000 \times 1=$
- Take remainder at 35% : $6000 \times 0.35=$ 2100
- Demand Load 5,100

3000
4500 VA 3000 VA 1500 VA 9000 VA

129

Step 2: Appliance Demand Load

- Dishwasher: 1500VA
- Waste Disposer: 1000VA
- Water Heater: 4500 W
- Demand Load 7000 VA
7000 VA

Step 4: Cooking Equipment Load

A. Determine the Column C value for $14,000 \mathrm{~W}$ range:

- 14 kW exceeds 12 kW by 2 kW
- Must be increased 5% for each kW over 12 kW per note 1
- $2 \times 5 \%=10 \%$
- 10% increase $=110 \%=1.1$ multiplier
B. Determine the demand load:
- Refer to Table 220.55 Column C value x multiplier from above
- Demand load $=8 \mathrm{~kW} \times 1.1=8000 \times 1.1=8800 \mathrm{~W}$

Step 3: Dryer Demand Load

- The dryer load must not be less than 5000W

133

134
135

Step 6: Combine loads from steps 1-5

Step 1. General Lighting Demand Load:	5100 VA
Step 2. Appliance Demand Load:	7000 VA
Step 3. Dryer Demand Load:	5000 W
Step 4. Cooking Equipment Demand Load:	8800 W
Step 5. Heating Demand Load:	$\underline{8000 \mathrm{~W}}$
Total Demand Load	$33,900 \mathrm{VA}$

Step 5: Air-Conditioning vs. Heat Demand Load

1. Power $=$ Volts \times Amps
2. AC Load $=240 \mathrm{~V} \times 17 \mathrm{~A}=4080 \mathrm{VA}$
3. $4080 \mathrm{VA} / 1000=4.08 \mathrm{kVA}$
4. Compare Heat load and AC Load
5. Heat load $=8 \mathrm{~kW}(8000 \mathrm{~W})$
6. $\mathrm{AC} \mathrm{load}=4.08 \mathrm{kVA}(4080 \mathrm{VA})$
7. The heating load is larger, so omit the AC load
8. Go with 8000 W heating load

6. Feeder and Service Conductor Size

- For one-family dwellings and individual dwelling units of two-family and multifamily dwellings...
- Service and feeder conductors supplied by a single-phase, 120/240V system can be sized using 310.15(B)(7)
- The conductors can be sized to 83% of the service overcurrent protection device rating (not the calculated load)

NOTE: The 83% deduction cannot be used for two-family or multi-family dwellings

(7) Single-Phase Dwelling Services and Feeders.

For one-family dwellings and the individual dwelling units of two-family and multifamily wellings, service and feeder conductors supplied by a single-phase, $120 / 240$-volt system sh be permitted to be sized in accordance with $310.15(B)(7)$ (7) (1) through (4)
For one-family dwellings and the individual dwelling units of two-family and multifamily dwelings, single-phase feeder conductors consisting of 2 ungrounded conductors and the with 310.15 (B) (B) (7) (1) through (3)
(1) For a service rated 100 through 400 amperes, the service conductors supplying the entire load associated with a one-family dwelling, or the service conductors supplying the entire load associated with an individual dwelling unit in a two.family or multifamily dwelling.
shall be permitted to have an ampacity not less than 83 percent of the service rating.
(2) For a feeder rated 100 through 400 amperes, the feeder conductors supplying the entire
load associated with a one family dwelling, or the feeder conductors supplying the entire load associated with a one-family dwelling, or the feeder conductors supplying the enti|e
load associated with an individual dwelling unit in a two-family or multifamily dwelling. shall be permitted to have an ampacity not less than 83 percent of the feeder rating.
(3) In no case shall a feeder for an individual dwelling unit be required to have an ampacity greater than that speeified in $\mathbf{3 1 0 . 1 5 (B) (Z) (7) (1) ~ o r ~ (2) . ~}$
(4) Grounded conductors shall be permitted to be sized smaller than the ungrounded conductors, if the requirements of 220.61 and 230.42 for service conductors or the requirements of 215.2 and 220.61 for feeder conductors are met.

Service Size Conductor Example

- What size conductors are required if the calculated load for a dwelling unit equals 33,900 VA from previous example
- Find Amps: 33,900 VA/240V = 141A
- Use 150A service for 141A
- Service conductor $=83 \%$ of service rating per 310.15(B)(7)
- $150 \times 0.83=125 \mathrm{~A}$
- Use 1 AWG rated for 130A at 75 deg C

141

Neutral Demand Calculations

- Uses only loads that use the neutral conductor:

General lighting and receptacles

- Small appliances
- Cooking equipment
- Clothes dryer

142

Neutral Service and Feeder Calculation [220.61(B)]

- Use 100% of calculated general lighting and receptacle demand: 5100VA
- Use 100\% of calculated appliance demand load: 2500 VA
- Cooking Equipment Neutral Load [220.61(B)(1)]
- Calculated as 70\% of demand load
- From previous example, demand load = 8800 VA
- 8800 VA x $0.70=6160$ VA
- Dryer neutral load [220.61(B)(1)]
- Based on 70% of the demand load
- From previous example, dryer demand load $=5000 \mathrm{~W}$
- 5000 W x $0.70=3500 \mathrm{~W}$

Total Neutral Load

- General Lighting and Receptacle demand:
- Appliance Demand Load:

Dryer Demand Load: 6160 W

- Cooking Equipment Demand Load: 17260 VA
- Total Neutral Demand
- Neutral amps = neutral demand/system voltage: $17,260 / 240=72 \mathrm{~A}$
- \#4 AWG at 75 deg C is rated for 85A per Table 310.15(B)(16)
- Therefore minimum neutral size required is \#4 AWG

Service Size Conductor Example 2

- What size conductors are required if the calculated load for a dwelling unit equals 195A, and the service disconnect is rated 200A?

Service conductors supplying the entire load for a one-family dwelling can be sized not less than 83% Of the service rating

147

Optional Method Load Calculations

Motors

- Motor present unique challenges
- Expensive, large, heavy, moving parts
- Impact on power system
- High inrush current
- Need to allow motor to start without tripping
- Needs protection against
- Short circuits
- Ground faults
- Overcurrent

150

Motor Branch-Circuit Conductors

- What is the minimum ampacity of the branchcircuit conductors for a $25 \mathrm{hp}, 460$ volt, 3 -phase squirrel-cage motor with a nameplate full-load current rating of 32.5 amperes?

151

Branch-Circuit Conductors

- Section 430.6(A)(1)
- Nameplate FLA is not to be used
- Use Table value for FLC
- Table 430.250, 25 hp at 460 volts
- Table value FLC = 34 amperes
- Section 430.22
- Ampacity $=$ FLC $\times 125 \%$
- Ampacity $=34 \mathrm{~A} \times 1.25=42.5$ amperes
- Answer: 42.5 amperes

154

Motor Branch-Circuit Conductors

- Motors that are permitted to use the nameplate value (instead of Table values) for sizing the branch-circuit conductors are as follows:
- Low speed and multispeed motors
- Listed appliances and specific equipment
- Torque motors
- AC adjustable voltage motors
- Adjustable-speed drive systems

155

157

Short-Circuit and Ground-Fault Protection

Purpose:

- To protect circuit conductors, motors and motor controller equipment from overcurrent due to short-circuits and ground-faults

Short-Circuit and Ground-Fault Protection

- The "motor branch-circuit short-circuit and groundfault protective" device actually refers to a typical fuse or circuit breaker that...
- is set to trip at a higher rating than a branch-circuit fuse or circuit breaker for a common circuit
- protects the motor branch circuit against short circuits and ground faults only
- does not protect the motor circuit against overloads

Short-Circuit and Ground-Fault Protection

The fundamental rule of $430.52(\mathrm{C})(1)$ requires:

- The maximum rating or setting of the protective device must not exceed the values calculated according to Table 430.52
- And, from a practical point of view, Exception No. 1 permits the next higher standard size overcurrent device to be used
- This is often referred to as "round up rule"

Short-Circuit and Ground-Fault Protection

- Determine the maximum overcurrent protection permitted according to Table 430.52 for a typical 20 HP, 3 phase, 460 volt, Design B, squirrel cage or synchronous motor
- The overcurrent protective devices selected for this example include time-delay fuses but for training, we will consider an inverse time breaker as well

O Pin Header Horsepower	Table 430.250 Full-Load Current, Three-Phase Alternating-Current Motors									
	Induction-Type Squirel Cage and Wound Rotor (Amperes)							Synchronous-Type Unity PowerFactor* (Amperes)		
	115 Volts	200 Vols	208 Vots	230 Volts	460 Volts	575 Volts	2300 Vols	230 Volts	460 Vots	575 Votis 2
10	-	322	30.8	28	14	11	-	-	-	-
15	-	48.3	46.2	42	21	17	-	-	-	-
20	-	62.1	59.4	54	27	22	-	-	-	-
${ }^{25}$	-	${ }^{78.2}$	${ }^{74.8}$	${ }^{68}$	${ }^{34}$	${ }^{27}$	-	${ }^{53}$	${ }^{26}$	${ }^{21}$
30	-	92	${ }^{88}$	80	${ }^{40}$	32	-	${ }^{63}$	32	${ }^{26}$
${ }^{40}$	-	${ }^{120}$	114	104	52	${ }^{41}$	-	${ }^{83}$	${ }^{41}$	${ }_{3}$
50	-	150	143	130	65	52	-	104	52	42
60	-	177	169	154	${ }^{77}$	62	16	${ }^{123}$	${ }^{61}$	49
75	-	221	211	192	${ }_{96}$	77	${ }^{20}$	155	78	62
100	-	285	273	${ }^{248}$	${ }^{124}$	99	${ }^{26}$	202	101	${ }^{81}$
125	-	359	${ }^{34}$	312	156	125	31	253	${ }^{126}$	101
150	-	414	396	360	180	144	${ }^{37}$	302	151	121
200		552	${ }^{528}$	480	240	192	49	400	201	161
250	-	-	-	-	302	242	60	-	-	-
300	-	-	-	-	361	299	72	-	-	-
${ }_{350}$	-	-	-	-	414	${ }_{3} 36$	${ }^{83}$	-	-	-
400	-	-	-	-	477	382	95	-	-	-

	Table 430.52 Maximum R Circuit Short-Circuit and	ating or Se Ground-Fa	tting of Mo ult Protecti	tor Branch ve Devices
		Perce	ntage of Full-Lo	ad Current
	contime Type of Motor $\begin{array}{c}\text { Nont } \\ \text { Delay } \\ \text { Fuse }\end{array}$	Dual Element (Time-Delay) Fuse	Instantaneous Trip Breaker	Inverse Time Breaker
	Single-phase motors 300	175	800	250
	AC polyphase motors other than wc	$\begin{array}{r} \text { end-rotor } \\ 175 \end{array}$	800	250
	Squirrel cage-other than Design B 6 300	$\begin{gathered} \text { hergy-efficient } \\ 175 \end{gathered}$	800	250
	Design B energy-efficient 300	175	1100	250
	Synchronous 300	175	800	250
	Wound rotor 150	150	800	150
哲	Direct current (constant voltage) 150	150	250	150

Instantaneous Trip Circuit Breakers
nesurumeratiboriock cem Won't trip on low levels of overcurrent

Inverse Time (Thermal Magnetic) Breaker
Has as magnetic portion for tripping fast on High fault levels.

And has a thermal portion which allows for tripping on low overcurrent levels - longer trip

Short-Circuit and Ground-Fault Protection

- Solution: Using Time-Delay Fuses
- Table 430.250: 20 HP at 460 volts
- FLC = 27 amperes
- Table 430.52: Time-delay fuse 175%
- OCPD rating $=27 \mathrm{~A} \times 1.75=47.25$ amperes
- 430.52(C)(1), Ex. No. 1 permits next larger standard size
- 240.6(A) next larger size, 50 ampere
- 50 amperes is the maximum rating of the time-delay fuse for the 20 HP motor
- Answer: 50 ampere time-delay fuses

Motor Overload Protection

Overload Protection

- The purpose of motor overload (OL) protection is to protect the motor, motor control apparatus, and motor branch-circuit conductors against excessive heating due to overloads

Electronic Overload Device

Bi-Metallic (Mechanical) Overload

171

Motor Overload Protection

- The overload current is a current that, when it persists for a sufficient length of time, can damage the equipment and/or the conductors
- Overloads are caused by the following:
- Failure to start,
- Excessive load on motor,
- Worn motor bearings, or
- Other mechanical problems

Motor Overload Protection

- Section $430.32(\mathrm{~A})(1)$ requires that overload protective devices for continuous duty motors, rated more than one horsepower, be sized according to the motor nameplate FLA and the following motor nameplate information
- Service factor not less than $1.15=125 \%$
- Temperature rise not over $40^{\circ} \mathrm{C}=125 \%$
- All other motors $=115 \%$
- These percentages are generally considered the maximum OL protection unless...
- [See 430.32(C) not sufficient to start motor]

Motor Overload Protection

- 430.32(A)(1), (Max. OL protection) :
- Use nameplate FLA
- Service factor 1.15 , temperature rise $40^{\circ} \mathrm{C}, 125 \%$
- OL protection $=$ FLC $\times 125 \%$
- OL protection $=75 \mathrm{~A} \times 1.25=93.75$ amperes
- Answer: 90 amperes

Motor Overload Protection

- Determine the maximum overload protection (OL protection) for a $30 \mathrm{HP}, 240$ volt, 3-phase, squirrel-cage induction motor with a nameplate full-load current of 75 amperes, service factor of 1.15 , and a temperature rise of $40^{\circ} \mathrm{C}$

Motor Overload Protection

- One of the goals of overload protection is to protect a piece of electrical equipment as close to its rated full-load current as possible, while not having nuisance tripping during the starting current period
- There are other permissions within the Code to adjust the previous requirements
- Those adjustments are permitted by the Code to allow for hard motor starting, different levels of protection, and different types of overload protection devices

Transformer Calculations

Transformer Basics

- Works on the principle of mutual induction
- Power measured in VA (Volts-Amps)
- Can be single phase or three phase
- Typically have a primary and secondary winding
- Current in one winding induces a current in another winding
- Voltage and current determined by the number of turns of wire in the windings
- Can step or step down voltage
- Windings require protection from damage

181

Transformer Basics

- It is difficult to apply overcurrent protection directly to output of transformer windings to protect output conductors
- Therefore tap rules apply

Primary Overcurrent Protection - Less Than 2A Example

750 VA Transformer

Transformer Overcurrent Protection

- Objective: To protect the windings, not the conductors
- Reference section 450.3(B)

Table 450.3(B) Primary Protection Only	
Primary Current Rating	Maximum Protection
9A or more	125%, note 1
Less than 9A	167%
Less than 2A	300%
Note 1: of a fuse or nonadjustable circuit breaker, the next higher rating is permitted $[240.6(\mathrm{~A})$]	

183

Primary Overcurrent Protection - Less Than 2A Example

- What's the maximum primary overcurrent protection device rating for a 750VA continuously loaded, single-phase, 480V transformer?

Primary Overcurrent Protection - Less Than 9A Example

- What's the maximum primary overcurrent protection device rating for a 2 kVA continuously loaded, single-phase, 240 V transformer?

Primary
$\mathrm{P}=\mathrm{V} \times \mathrm{A}$
$\mathrm{A}=\mathrm{P} / \mathrm{V}=2000 \mathrm{VA} / 240 \mathrm{~V}=8.33 \mathrm{~A}$

Protection
Per Table 450.3(B), for primary current less than 9A, the Maximum overcurrent protection is 167% or 1.67 $\mathrm{I}_{\text {pri }}=8.33 \mathrm{~A} \times 1.67=13.92 \mathrm{~A}$ Round down to 13 amps since next size up only applies to

م Pin Header	Table 240.6(A) and Inverse Tard Ampere Ratings for Fuses Stircuit Breakers			
Standard Ampere Ratings				

Primary Overcurrent Protection - Greater Than 9A Example

- What's the maximum primary overcurrent protection device rating for a 2 kVA continuously loaded, three-phase, 480 V transformer?

187

Transformer Primary Conductor Sizing

- Conductors must be sized no less than 125% of the continuous loads, plus 100 percent of the noncontinous loads, based on the terminal temperature rating ampacities as listed in Table 310.15(B)(16) before and ampacity adjustment [210.19(A)(1)]

Primary Conductor Sizing Example 1

- What size primary conductors can be used for a 45 kVA continuously loaded transformer, 3-phase, 480V transformer, where the primary overcurrent protection device is sized at 70A

Primary Conductor Sizing Example

- Look for key words
- What size primary conductors can be used for a 45 kVA continuously loaded transformer, 3 -phase, 480 V transformer, where the primary overcurrent protection device is sized at 70A

Primary Conductor Sizing Example 1

1. Size the primary conductor at 125% of the primary current rating - $\mathrm{I}=45,000 \mathrm{VA} /(480 \mathrm{~V} \times 1.732)=54 \mathrm{~A}$

- $54 \times 1.25=68 \mathrm{~A}$
- Per table 310.15(B)(16), \#4 wire at 60 deg C terminals is rated for 70A

2. Verify that the conductors are protected in accordance with their ampacities [240.4]

- 4 AWG rated 70A at 60 deg C is permitted to be protected by a 70A primary overcurrent protection device

195

Primary Conductor Sizing Example 2

- What size primary conductors can be used for a 75 kVA continuously loaded transformer, 3-phase, 480V transformer, where the primary overcurrent protection device is sized at 125A

Primary Conductor Sizing Example 2

1. Size the primary conductor at 125% of the primary current rating - $\mathrm{I}=75,000 \mathrm{VA} /(480 \mathrm{~V} \times 1.732)=90 \mathrm{~A}$

- $90 \times 1.25=113 \mathrm{~A}$
- Per table 310.15(B)(16), \#2 wire at 75 deg C terminals is rated for 115A

2. Verify that the conductors are protected in accordance with their ampacities [240.4]

- 2 AWG rated 115A at 75 deg C is permitted to be protected by a 125A primary overcurrent protection device.
- However, the maximum continuous load is limited to 92 A (115A x 80\%) in accordance with 215.2(A)

Next Steps

E 4 hours of Code Class Hours will be reported to the OCILB for Code Continuin Education Credits
... Contact instructor at hpmatthews@matthewselectrical.net for any questions or comments

201

File Attachments for Item:

ER-3 2020 NEC Hazardous Locations Webinar (Matthews Electrical Services)
BI, MPE, EPE, MechPE, ESI, BI, MI, RBO, RPE, RBI, RMI, RIUI (4 hours)
Staff Notes: Add NRIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:

APPLICATION

 FORContinuing Education Course Approval

Continuing education programs approved for education credit by the Ohio Board of Building Standards may be used for compliance with certification requirements related to code enforcement, plan review, and inspection responsibilities. The credit is to be used to renew the certifications issued by the Ohio Board of Building Standards pursuant to section 3781.10 (E) ORC.

Board of Building Standards 6606 Tussing Road, P.O. Box 4009
Reynoldsburg, Ohio 43068-9009
(614) 644-2613 Fax: (614) 644-3147 dic.bbs@com.state.oh.us
www.com.state.oh.us/dic/dicbbs.htm

COURSe SUbmitter: Henry Peter Matthews
Course Submitter: Henry Peter Mathews
Organization: Mathews Electrical Services ${ }^{\text {a }}$ (Contact ${ }_{\text {Namer }}$
Address: 1203 McKinley Place (Orgenization/Company)
City: Fostoria $\quad \begin{gathered}\text { (incuse Room Number, Suine, ete.) } \\ \text { State: }\end{gathered}$
E-Mail: hpmathews囱mathewselectrical.net
Telephone: 419-575-3488 Fax:
Course Sponsor:

COURSE INFORMATION:		
Course Title: NEC Hazardous Locations		
New Course Submittal: \square Update Course: \square Prior Approval Number:		
Purpose and Objective: The purpose of this webinar is to introduce attendees to the various requirements for Hazardous Locations		
in chapter 5 with special focus on Articles 500,501, 502, and 503. This class will cover Class I, Class II and Class III conditions and will		
describe the differences between Division 1 and Division 2 locations. This class will also cover the special wiring and equipment		
requirements for hazardous (classified) locations.		
Number of Instructional Contact Hours that can be obtained upon completion: If Multi-Session, Number of Instructional Contact Hours Per Session: \qquad		
Program Applicable for the Following Participants:		
Res Building Official \square Res Plans Examiner \square Res Building Inspector \square Res Mechanical Inspector \square Res IU Inspecto		
Electrical Safety InspectorsLocation of ESI Course: ww.mathewselectricalservices.net \quad Date(s) of ESI Course(s): November 19, 2022		
SUBMITTAL CHECKLIST: Make Sure all of the Following lnformation is Submitted:		$\left.\right\|_{\text {Check }} ^{\text {Off }}$
Course Submitter:	Name of contact person and their certification numbers, organization, address, fax, phone	x
Course Sponsor:	Organization sponsoring or requesting the program (if any)	
Course Title:	Name of course (related to content)	\times
Purpose/Objective;	Describe purpose and how course witl improve competency of certification(s) listed	x
Contact Hours:	Indicate instructional time and credit requested in hours ((e.g.: $0.5 \mathrm{hr}, 1 \mathrm{hr}, 3.5 \mathrm{hrs}$)	x
Participants:	Check off each certification for which credit is requested (for which course relates to certification)	x
Content of Program:	Include collated agenda, time schedule, course outline; list specific sections of code, references, and topics covered	x
Course Materials:	Collated workbooks, handouts, hard copy or electronic versions of program is available	x
Instructor(s) Info.:	Resume of professional/educational qualifications \& teaching/training experience/BBS certifications	x
Test Materials:	Copy of quizzes or tests to be given	x
Completed Application:		\times

NOTE: The Board does NOT grant retroactive approval for courses presented prior to approval date.
RECEIVED

Hazardous Locations

- Review Chapter 5 of the NEC that covers hazardous locations
- Learn the definitions of the various hazardous locations: Class I, Class II, Class III
- Learn the definitions of the various divisions associated with the classes: Division 1 and Division 2
- Learn the difference between the Division method and Zone method of classification
- Review the wiring methods required for hazardous locations
- Sealing requirements
- Enclosure requirements
- Equipment selection
- Grounding and bonding requirements
- Understand what types of equipment are required in hazardous locations
- Understand how to read hazardous area classification drawings
- Learn the various alternative methods for installations in hazardous locations
- Enclosure pressurization
- Intrinsic safety equipment
- Hermetically sealed equipment
- Sealed contacts
- Learn how Temperature codes (T-codes) impact equipment selection
- Learn how to conduct electrical installations in the following areas:
- Gas fueling stations
- Petrochemical processing locations
- Automobile service stations and garage
- Aircraft refueling locations
- Hazardous chemical storage locations
- Dust handling locations
- Locations with air-suspended fibers (textiles for example)
- Tank farms and pipeline facilities
- Many others
- Learn how to understand the various European methods and how they may or may not apply in the United States.

Henry Peter Matthews, PE, CPE, CESCP, PVA

Home Address
1203 McKinley Place
Fostoria, Ohio 44830
Email: hpmatthews@matthewselectrical.net
Home Phone: 419-701-7707
Cell Phone: 419-575-3488

Work Address
Marathon Petroleum Company
539 South Main Street
Findlay, Ohio 45840
Email: hpmatthews@marathonpetroleum.com
Office phone: 419-421-3423
Cell phone: 419-957-2110

Work Experience

Marathon Petroleum Company, LP; Findlay, Ohio June 2006 - Present

- Advanced Senior Engineer/Electrical Specialist
- Electrical Engineering Supervisor - Terminal Engineering
- Project Engineer - Major Projects
- Electrical Designer - Retail Division

Cooper Standard Automotive, Bowling Green, Ohio
 July 1993 - June 2006

- Plant Engineering Manager
- Plant Electrical Engineer

Toledo Engineering Company (consultant); Toledo, Ohio June 1989 - July 1993

- Electrical Drafter

Education
Bowling Green State University; Bowling Green, Ohio
Aug 2003
Masters of Business Administration
Pennsylvania State University; University Park, PA Dec 1989
BS Electrical Engineering
Solar Energy International, Paonia, Colorado
Sept 2021
Solar PV Training
Owens Community College; Findlay, Ohio
April 2017
Certificate: Introductory Welding
Penn Foster Career School
July 2010
Certificate: Plumbing
Penn Foster Career School
October 2004
Certificate: Electrician
Certifications Professional Engineer (PE): OH, MI, IN, KY, IL, WI
Photovoltaic Associate (PVA) by NABCEP
Certified Electrical Safety Compliance Professional (CESCP), NFPA
Certified Plant Engineer (CPE): Association for Facility Engineers
Building Operator Certification (BOC): Northwest Energy Efficiency Council

Licenses	Ohio Electrical Contractor, Ohio Department of Commerce, License \# 46972 Ohio Training Agency, Ohio Construction Industry Licensing Board, Agency \#48714 Ohio Training Agency, Ohio Board of Building Standards
Special Training	Solar Energy International (SEI), Paonia, Colorado - Solar Electric and Design and Installation Course, April 2021, 60 hours - PV Systems Fundamentals (Battery-Based), June 2021, 40 hours - Advanced PV System Design and the NEC, June-July 2021, 60 hours - Comparing Battery Technologies, July 2021, 10 hours - Tools and Techniques for Operations and Maintenance of PV Systems, 9/21, 4

Affiliations

> Institute of Electrical and Electronics Engineers (IEEE) - Senior Member International Association of Electrical Inspectors (IAEI)
> NFPA Section Member for Architects, Engineers and Building Officials
> Illumination Engineering Society of North America (IESNA)
> API RP 545 former Co-Chair, American Petroleum Institute, Lightning Protection for Above Ground Storage Tanks (2017-2018)

Business	Matthews Electrical Services, Owner
Ownership	Designer Cuts Hair Salon, LLC; Co-owner

Biography

Henry has worked in the electrical, power, electronics, instrumentation, controls and communication fields for over 30 years. He earned his Bachelor of Science degree in Electrical Engineering from Penn State University in 1989. Henry worked as a consultant for Toledo Engineering Company in Toledo, Ohio as a drafter and field technician.

In 1993 he started working for Cooper Standard Automotive Company in Bowling Green, Ohio in 1993 as a Plant Electrical Engineer. He was then promoted to Plant Engineering Manager in 2000. During this time, he earned his Professional Engineering License in Ohio.

In 2003, Henry earned his MBA at Bowling Green State University.

In 2006, Henry joined Marathon Petroleum Company in Findlay, Ohio. He then went on to obtain his Professional Engineers license in Electrical Engineering for Michigan, Indiana, Illinois, West Virginia, Kentucky, Minnesota and Wisconsin. During his tenure at Marathon, Henry has had several roles including Electrical Design Engineer, Project Engineer and Electrical Supervisor. He is currently an Advanced Senior Engineer where he writes electrical standards for the company and conducts a community of practice for all the company's electrical engineers and safety professionals.

During his time at Cooper Standard Automotive and Marathon Petroleum, Henry developed a passion for teaching, learning and applying Electrical Construction Codes. At Cooper, he trained the entire non-electrical maintenance staff to perform basic electrical tasks.

At Marathon, Henry works with the Learning and Development Department to conduct multiple training sessions for new hires and seasoned engineers on various topics including Electrical Safety, Grounding and Bonding, Hazardous Area Location, Electrical Inspection, Motors, Lightning protection Static Electricity Mitigation, Reading and Understanding Electrical Diagrams, Programmable Logic Controllers and more.

Henry also works very closely with the Talent Acquisition Teams and visits numerous college campuses to deliver presentations on Engineering, Career Development, Networking and other topics.

Henry recently served as the Co-chair of the API Recommended Practice 545 Task Group for Lightning Mitigation for Above Ground Storage Tanks. In this role, he works with engineers, scientists and manufacturers from all over the world to evaluate the impacts of lightning and static electricity on metal above ground storage tanks.

His passion for teaching and Electrical Safety has motivated him to earn the Certified Electrical Safety Compliance Professional Certification (CESCP) from NFPA. He also regularly attends numerous electrical and safety conferences and training sessions conducted by NFPA, IEEE, API.

Previously, Henry was the President of the Fostoria, Ohio area Toastmasters team.

Henry is also a member of the International Association of Electrical Inspectors.
Henry also owns two small businesses:
Matthews Electrical Services - that performs mainly limited residential and small commercial electrical services and conducts training for licensed electricians in the state of Ohio.

Designer Cuts Hair Salon, LLC - Henry co-owns the beauty salon with his wife.

NEC Hazardous

 Locations Webinar OCILB COURSE NO. 4871421
DANGER
 HAZARDOUS AREA

Webinar Rules

- Attendee must be present the entire time (except breaks)
- Webinar may be recorded
- Proof of attendance and participant identity
- Potential OCILB audits
- Turn on webcam:
- After breaks
- Before end of class
- At instructor discretion to check attendance
- Mute microphone at all times
- Prevents distraction during webinar
- Instructor may activate participant microphone if verbal response is needed

2

Chapter 5

 Special Occupancies (Hazardous Locations)
Disclaimer

- The views and opinions presented in this course are those of Matthews Electrical Services and not necessarily those of the various entities the presenter references
- The views also does not necessarily reflect the views of his previous or current employers
- The material used in this class is based on documented publiclyavailable information (NFPA, OSHA, ESFI etc.)
- The interpretation of this material is based on the presenter's experience and training of the subject matter.

Disclaimer

- This presentation references equipment and websites from various manufacturers, agencies and other resources. This is not intended to endorse particular products, vendors, websites or manufacturers.
- The content is shown for educational purposes only.

9

But First...

Let's take a poll

Why Do We Care?

- Special wiring
- Special equipment
- Special procedures

14

16

Ignitible Fibers/Flyings

25

26

Definitions: Vapor Density
Some materials are lighter than air.
Others are heavier than air
Lighter than air gases have a vapor
density less than 1.0
Tend dissipate rapidly
Rarely accumulate to form an ignitable
atmosphere

Heavier than air gases have a vapor density greater
than 1.0

Tend to fall to grade level or below grade

Poses high risk due to tendency to collect

May remain for a significant amount of time until dispersed naturally or mechanically

Gasoline Vapors Heavier Than Air

Gasoline vapors are heavier than air and fall to the lowest points

Hazardous (classified) location at motor fuel dispensers is Class I, Division 2 up to a level of 450 mm (18 in .) above grade within 6.0 m (20 ft) of the dispensers owing to the fact that gasoline vapors are heavier than air and fall to lowest points.

- Material Safety Data Sheets (MSDS) now called Safety Data Sheets (SDS)
- NFPA 497

PeG

MATERIAL SAFETY DATA SHEET

Chemical	Cas No.	$\begin{gathered} \text { Class I } \\ \begin{array}{c} \text { Cisision } \\ \text { Croup } \\ \hline \end{array} \\ \hline \end{gathered}$	Type ${ }^{\text {e }}$	$\begin{aligned} & \text { Flash } \\ & \text { Point }\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \mathrm{ATT} \\ & \left.{ }_{(0 \mathrm{C}}^{\mathrm{C}}\right) \end{aligned}$	\%LFL	\%UFL	$\begin{gathered} \text { Vapor } \\ \text { Density } \\ \text { Denir } \end{gathered}$	$\begin{gathered} \text { Vapor } \\ \text { Pressure } \\ \left(\begin{array}{c} \text { Pm Hg } \end{array}\right) \\ \hline(\operatorname{man} \end{gathered}$	$\begin{gathered} \hline \text { Class I } \\ \text { Zone } \\ \text { Groupe } \\ \hline \end{gathered}$	$\underset{(\mathrm{m})}{\mathrm{MII})}$	MIC Ratio	$\underset{(\mathrm{mm})}{\mathrm{MESG}}$
Acetaldehyde	$75-07-0$	$\mathrm{c}^{\text {d }}$	1	-98	175	4.0	60.0	1.5	874.9	iIA	0.37	0.98	0.92
Aceric Acid	64-19-7	$\mathrm{D}^{\text {d }}$	II	39	426		19.9	2.1	15.6	IIA		2.67	1.76
	540-88-5	D	II			1.7	9.8	4.0	40.6				
Acetic Anhydride	108-24-7	D	II	49	316	2.7	10.3	3.5	4.9	IIA			1.23
Acetone	67-64-1	$\mathrm{D}^{\text {d }}$	1	-20	465	2.5	12.8	2.0	23.7	IIA	1.15	1.00	1.02
Acetone Cyanohydrin	$75-86-5$	D	HiA	74	688	2.2	12.0	2.9	0.3				
Acetonitrie	75 -05-8	D	1	6	524	3.0	16.0	1.4	9.1	IIA			1.50
Acerylene	$74.86-2$	$\mathrm{A}^{\text {d }}$	gAs		305	2.5	100	0.9	36600	IIC	${ }_{0}^{0.017}$	0.28	0.25
Acrolein (Inhibited)	107-02-8	$\mathrm{B}_{(C)}{ }^{\text {d }}$	1		235	2.8	31.0	1.9	274.1	пв	0.13		
Acrylic Acid	79-10-7	D	II	54	438	2.4	8.0	2.5	4.3	пв			0.86
Acrylonitrile	107-13-1	$\mathrm{D}^{\text {d }}$	1	0	481	3	17	1.8	108.5	пв	${ }^{0.16}$	0.78	0.87
Adiponitrile	${ }^{111-69-3}$	D	${ }^{\text {IIIA }}$	${ }_{92}^{93}$	${ }_{5}^{550}$			1.0	${ }^{0.002}$				
Ally A Alcohol	107-18-6	${ }^{\text {d }}$	1	22	978	2.5	18.0	2.0	25.4	п1в			0.84
Allyl Chloride	107-05-1	D	I	-32	485	2.9	11.1	2.6	366	${ }^{\text {IIA }}$		1.33	1.17
Ally Glycidy Ether	106-92-3	${ }^{\text {B }}$ (C) ${ }^{\text {e }}$	II		57			3.9					
Alpha-Methy Styrene	98-88-9	D	II		574	${ }_{0} .8$		4.1	2.7				
n-Amyl Aceate	628-63-7	D	,	25	360	1.1	7.5	4.5	4.2	${ }^{\text {ina }}$			1.02
sec-Amyl Aceate Ammonia	${ }_{7664-48-0}^{626-7}$	${ }_{\text {D }}$	$\stackrel{\text { cas }}{\text { G }}$	23	651	${ }_{15}^{1.1}$	7.5 28	${ }_{0.6}^{4.5}$		${ }_{\text {IIA }}$	680		
Aniline	62-53-3	D	IIIA	70	615	1.2	${ }_{8.3}^{28}$	${ }_{3.2}^{0.6}$	${ }^{7498.0} 0$	${ }_{\text {IIA }}^{\text {II }}$	680	6.85	3.17
Benzene		$\mathrm{D}^{\text {d }}$	1	-11	498		7.8		94.8	IIA	0.20	1.00	0.99
Benzy Chloride	98-87-3	D	mia		585	1.1		4.4	0.5				
Bromopropyne	106-96-7	D	1	10	924	3.0							
${ }^{\text {n-Buane }}$	106-97-8		GAS		288	1.9	8.5	2.0		H1a	0.25	0.94	
1,9.-Butadiene	106-99-0	B($\mathrm{D}^{\text {ded }}$	GAS		${ }^{420}$	2.0	11.5	1.9		${ }^{118}$	0.13	0.76	0.79
Butyl alcohol(s) (butanol-2)	71-36-3	${ }^{\text {d }}$	1		${ }^{34} 3$	1.4	11.2	2.6	7.0	пиа			0.91
	78-92-2	${ }^{\text {d }}$	1	23.8	405	1.7	9.8	2.6		[1A			
													tinues)

34

Hazardous (Classified) Locations

- Article 500 - Hazardous (Classified) Locations, Classes I, II and III, Divisions 1 and 2
- Article 501 - Class I Locations
- Article 502 - Class II Locations
- Article 503 - Class III Locations
- Article 504 - Intrinsically Safe Systems
- Article 505 - Zone 0,1 and 2 Locations
- Article 506 - Zone 20, 21 and 22 Locations for Combustible Dusts or Ignitible Fibers/Flyings

41

Division 2 Areas

42

Hazardous Location Decision Tree


```
Assess the equipment
```

```
Can it be an ignition source?
Can it be an ignition source?
```

Assess the environmen Can something external be an ignition source?
Open flame, exposed to lightning, overhead power lines, exposed to extreme heat (sunlight, reflection etc.)

Why Do We Do This?
https://www.youtube.com/watch?v=a96kris 06EQ\&t=61s

Class I Location - Definition 500.5(B)

- Class I locations are those in which flammable gases, flammable liquid-produced vapors, or combustible liquid-produced vapors are or may be present in the air in quantities sufficient to produce explosive or ignitable mixtures.
- Class I locations shall include those specified in $500.5(B)(1)$ and $(B)(2)$

Class I, Division 1

- A location in which ignitable concentrations of flammable gases, flammable liquid-produced vapors, or combustible liquid-produced vapors can exist under normal operating conditions, or
- A location in which ignitable concentrations of such flammable gases flammable liquid-produced vapors, or combustible liquids above their flash points, may exist frequently because of repair or maintenance operations or because of leakage, or
- A location in which breakdown or faulty operation of equipment or processes might release ignitable concentrations of flammable gases, flammable liquid-produced vapors and might also cause simultaneous failure of electrical equipment in such a way as to directly cause the electrical equipment to become a source of ignition

Class I, Division 2

- A location in which volatile flammable gases, flammable liquidproduced vapors, or combustible liquid-produced vapors are handled, processed, or used, but in which the liquids, vapors or gases
- Will normally be confined within closed container or closed systems from which they can escape only in case of accidental rupture or breakdown of such containers or systems or in case of abnormal operation of equipment, or
- Are normally prevented by positive mechanical ventilation and which might become hazardous through failure or abnormal operation of the ventilating equipment

50

Class II, Division 1

- A location

1. In which combustible dust is in the air under normal operating conditions in quantities sufficient to produce explosive or ignitable mixtures, or
2. Where mechanical failure or abnormal operation or machinery or equipment might cause such explosive or ignitable mixtures to be produced, and might also provide a source of ignition through simultaneous failure of electrical equipment, through operation of protection devices, or from other causes, or
3. In which Group E combustible dusts may be present in quantities sufficient to be hazardous in normal or abnormal operation conditions

Class II, Division 2

3. A location In which combustible dust accumulations on, in, or in the vicinity of the electrical equipment could be sufficient to interfere with the safe dissipation of heat from electrical equipment, or could be ignitable by abnormal operation or failure of electrical equipment.

Class II, Division 2

- A location in which:

1. Combustible dust due to abnormal operations may be present in the air in quantities sufficient to produce explosive or ignitable mixtures, or
2. Where combustible dust accumulations are present but are normally insufficient to interfere with the normal operation of electrical equipment or other apparatus, but could as a result of infrequent malfunctioning of handling or processing equipment become suspended in the air; or

Class III Location -Definition 500.5(D)

- Locations that are hazardous because of the presence of easily ignitable fibers or where materials producing combustible flyings are handled, manufactured, or used, but in which such fibers/flyings ae not likely to be in suspension in the air in quantities sufficient to produce ignitable mixtures.

57

Class III, Division 2

- A location in which easily ignitable fibers/flyings are stored or handled other than in the process of manufacture.

Class III, Division 1

- A location in which easily ignitable fibers/flyings are handled, manufactured or used

Protection Techniques (500.7)

- Explosionproof equipment
- Dust Ignitionproof
- Dusttight
- Purged and Pressurized
- Intrinsic Safety
- Nonincendive Circuit
- Nonincedive Component
- Oil immersion
- Hermetically sealed
- Combustible gas detection
- Optical radiation methods (new for 2020 NEC)

61

Purged and pressurized systems are permitted for equipment in any hazardous (classified) locations for which they are identified.

Purged and Pressurized Technique

Enclosure purged using a protective gas to remove flammable gas or vapor Enclosure pressurized with a protective gas to keep flammable gas, vapor, combustible dust, or ignitible fiber out
Note: Types X, Y, and Z purging are addressed in NFPA 496
62

Basic Diagram of Fused Zener Diode Barrier
Intrinsically-Safe Circuit

Reproduction of NEC Handbook Exhibit 504.2

65

68

Conduit seals

- To prevent the passage of hot gases in conduit from one area to another that could create an ignition source

Prevent Hazardous Gas

69

73

Thickness of the compound in a sealing fitting cannot be less than 16 mm ($5 / 8 \mathrm{in}$.) in any case
General
Sealing
Requirements
Must generally not be less than the trade size of the raceway
(cont.)

```
See 501.15(C)(3)
```

Conduit Fill in Sealing Fittings
Conduit fill is generally limited
to 25\% of the cross-sectional
area of the conduit up to 40% fill

EYSX Expanded Fill Explosionproof Conduit Sealing Fittings

EYSX expanded fill sealing fittings from Eaton's Crouse-Hinds Division provide 40% wire fill capacity to allow uninterrupted runs in a conduit system. They are designed to restrict the passage of gases, vapors or flames from one portion of the electrical installation to another, limit explosions to the sealed off enclosure and limit pre-compression or "pressure piling" in conduit systems. EYSX expanded fill sealing fittings are available for installation in both horizontal or vertical positions.

Photo is representative

Ground faults returning to its source can create heat and be a possible ignition source if the current has to travel across loose connections:

- Knockout connections
- Loose conduit connections
- loose fittings

Conductor Strands

Gas or vapor and propagation of flames may occur through interstices (spaces or gaps) between strands of standard stranded conductors in sizes larger than 2 AWG

82

Bonding Requirements in Hazardous Locations

Grounding (bonding) bushing suitable for service bonding

- Equipment provided with threaded entries for threaded conduit or fittings, listed conduit, listed conduit fittings, or listed cable fittings shall be used
- Conduit and fittings for this use shall be threaded with a National (American) Standard Pipe Taper (NPT) thread
- NPT-threaded entries made into explosionproof equipment shall be made up with at least five threads fully engaged
- Listed explosionproof equipment, which have joints with factory-threaded NPT entries shall be made up with at least four and one-half threads that are fully engaged and wrenchtight.

Temperature (T-Codes)			
	emperature	Temperature Class (T-Code)	
Degrees C	Degrees F		
450	842	T1	
300	572	T2	
280	536	T2A	
260	500	T2B	
230	446	T2C	
215	419	T2D	
200	392	T3	
180	356	T3A	
165	329	T3B	
160	320	T3C	
135	275	T4	
120	248	T4A	
100	212	T5	
85	185	T6	${ }^{93}$

Wiring Methods in Hazardous Locations

- Rigid Metallic conduit (5 threads engaged)
- Enclosures and fittings rated for hazardous area
- Grounded hubs and bushings
- Conduit seals and drainage
- Special cable and connectors (mineral-insulated cable e.g.)
- Flexible conduit and coupling rated for the hazardous area

94

Goals

- Avoid expensive equipment
- Avoid special wiring requirements
- Avoid future hazards

97

98

Typical Zone System Hazardous Location

Typical Zone System Hazardous Location

한)

Reasons Why RMC and IMC are Preferred in Hazardous Locations
 - PVC and Fiberglass conduit can contribute to the buildup of static electricity

- Metallic conduit can help relax static charges since most are grounded
- Metallic conduit can be a primary or secondary path for ground fault current
- Provides shielding against noise
- Metallic conduit can actually reduce the magnitude of ground fault currents since the magnetic fields created during a fault can reduce (choke) the fields created by the faulted wires

Cables, Conduit, Magnetism and Inductive Heating

114

Ferrous metal (steel and iron) molecules align to the polarity of the magnetic field, and when the field reverses, the molecules reverse their polarity. This back-and-forth alignment of the molecules heats up ferrous metal parts.

118

Hazardous Location Example

Lighting Upgrade in a Service Garage

- What you need
- Layout of garage
- Materials used in the garage
- Information about ventilation of the garage
- Perform a Hazardous Area Classification assessment

Impacts

- What type of lighting and equipment to install
- What wiring and raceway methods to employ
- What options are available to mitigate?
- Risks to employees, public
- Liability

122

Details

- Building
- One level garage
- Three overhead doors
- No forced ventilation
- Vents located on east and west walls
- Conduits come into building from above ground storage tanks outside
- Monitoring tank levels and temperatures

5.10.15 Compressed Gas Cylinders (Material: Lighter than or Equal to Air, including hydrogen). (See Figure 5.10.15.)
Figure 5.10.15 Compressed Gas Cylinders (material: lighter than or equal to air, including hydrogen)

Motor Fuel Dispensing Facilities Area Classification
514.3 and Table 514.3(B)(1)

Detail View

Class I, Division 1

Elevation View
\square Class I, Division 2
Class I, Division 1

5.10.16 Compressed Gas Cylinders (Material: Heavier Than Air).

(See Figure 5.10.16.)

Δ Figure 5.10.16 Compressed Gas Cylinders (material: heavier than air).

FIGURE 5.10.4(a) Product Storage Tank Located Outdoors, at Grade. The material that is being stored is a flammable liquid

Material Properties

- Group
- Class
- Flash Point
- Vapor Density
- Autoignition Temperature (AIT)
- LFL\% and UFL\%
- Vapor Density
- Minimum Ignition Energy (MIE)
- Minimum Emission Safety Gap (MESG)

133

134

Per NFPA 497: Recommended Practice for the Classification of Flammable Liquids, Gases, or Vapors and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas

Perform Hazardous Area Classification

- Obtain Hazardous Area Classification diagram if one exists
- If not, create one
- Identify possible material handling points
- Where will material be under normal conditions?
- Where will material be under abnormal conditions (leaks, spills, testing etc.)?
- Do not include areas such as inside pipes, tanks, equipment etc.
- Look at areas such as flanges, nozzles, sumps, filters, strainers, pits etc.

How to Choose Right Lamp Fixture

- Hazardous Location: Class I, Division 2 / $/$ l
- Material Present: Fuel Oil \#2, AIT = 494.6 deg F
- Lamp is located in a hazardous location and the surface temp cannot exceed 494.6 deg. F or it can ignite the fuel oil vapors

Specifications

- Fuel Oil \#2
- Auto-ignition temperature: 257 deg. C (494.6 deg. F)
- Per NFPA 497 Table 4.4.2
- Desired Lamp fixture??
- General or Hazardous Location?

NEC Table
500.8(C)

Classification of
Maximum
Surface
Temperature

Maximum Temperature		
degrees C	degrees \mathbf{F}	T-Code
450	842	T1
300	572	T2
280	536	T2A
260	500	T2B
230	446	T2C
215	419	T2D
200	392	T3
180	356	T3A
165	329	T3B
160	320	T3C
135	275	T4
120	248	T4A
100	212	T5
85	185	T6

Surface temp of fixture cannot exceed 494.6 deg. F

Select T-code: T2C or better

Maximum Temperature		
degrees C	degrees \mathbf{F}	T-Code
450	842	T1
300	572	T2
280	536	T2A
260	500	T2B
230	446	T2C
215	419	T2D
200	392	T3
180	356	T3A
165	329	T3B
160	320	T3C
135	275	T4
120	248	T4A
100	212	T5
85	185	T6

Review the Group Codes

Class I (Gases or Vapors)
Class I hazardous locations are subdivided into the following four groups, depending on the type of flammable gases or vapors present:

Group A	Atmospheres containing acetylene.
Group B	Atmospheres containing hydrogen, fuel and com- bustible process gases containing more than 30 percent hydrogen by volume, or gases or vapors of equivalent hazard such as butadiene, ethylene oxide, propylene oxide and acrolein.
Group C	Atmospheres such as ethyl ether, ethylene, or gases or vapors of equivalent hazard.
Group D	Atmospheres such as acetone, ammonia, benzene, butane, cyclopropane, ethanol, gasoline, hexane, methanol, methane, natural gas, naphtha, propane, or gases or vapors of equivalent hazard.

146

Checklist

- Determine Hazardous Classification: Class I, Division 2
- Identify material(s) used in area: Fuel Oil \#2
- Check NFPA 497 for properties including AIT: 494.6 deg F
- Identify Group Classification (A,B,C,D): D
- Check transmission path of vapors. Install conduit seals as necessary
- Select light fixture:
- Verify proper hazardous classification: Class I, Division 2
- Verify material group codes: D
- Verify maximum surface temperature (T-Code)
- Verify that fixture is properly listed, identified, marked and/or labeled:

Installation requirements

- Boundary Seals
- Location: before leaving Class I, Div 2 and after re-emerging - Within 18 " of grade

No unions, couplings, boxes etc. after sea

- Threaded connections
- Conduit Selection and installation
- RMC, IMC with listed fittings
- Exceptions: see NEC
- Wire selection: seal so that no gases can get between wire strands
- Enclosure selection
- Fixture installation

Installation requirements

- Boundary Seals
- Conduit Selection
- Wire selection
- Enclosure selection
- Fixture installation

```
In Hazardous Locations, when completely and properly installed and maintained,
Type 7 and 10 enclosures are designed to contain an internal explosion without causing
use of oil-immersed equipment. Type 9 enclosures are designed to prevent the ignition
of combustible dust.
Type 7 Enclosures constructed for indoor use in hazardous (classified) locations
Type 7 Enclosures constructed for indoor use in hazardous (classified) loc
Type 8 Enclosures constructed for either indoor or outdoor use in hazardous
(classified) locations classified as Class I, Division 1, Groups A, B, C, and D as defined
NFPA 70.
ype 9 Enclosures constructed for indoor use in hazardous (classified) locations
classified as Class II, Division 1, Groups E, F, or G as defined in NFPA 70.
Type 10 Enclosures constructed to meet the requirements of the Mine Safety and
```


Recommended Practice for

 Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2API RECOMMENDED PRACTICE 500
THIRD EDITION, DECEMBER 2012
ERRATA, JANUARY 2014
REAFFIRMED, JULY 2021

157

159

File Attachments for Item:

ER-4 2020 NEC Overview Webinar (Matthews Electrical Services)
BO, MPE, EPE, MechPE, ESI, BI, MI, RBO, RPE, RBI, RMI, RIUI (4 hours)
Staff Notes: Add NRIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:

APPLICATION

FOR
Continuing Education Course Approval

Continuing education programs approved for education credit by the Ohio Board of Building Standards may be used for compliance with certification requirements related to code enforcement, plan review, and inspection responsibilities. The credit is to be used to renew the certifications issued by the Ohio Board of Building Standards pursuant to section 3781.10(E) ORC.

Board of Building Standards

 6606 Tussing Road, P.O. Box 4009 Reynoldsburg, Ohio 43068-9009 (614) 644-2613 Fax: (614) 644-3147 dic.bbs@com.state.oh.uswww.com.state.oh.us/dic/dicbbs.htm

course submitter: Henry Peter Matthews

Course Submitter: Henry Peter Mathews

Organization: Matthews Electrical Services
(Organtentюn/Company)
Address: 1203 McKinley Place

City: Fostoria \quad| (Inchide Room Number, Suile, cle.) |
| :---: |

E-Mail: hpmatthews@mathewselectrical.net
Telephone: 419-575-3488
Fax:
Course Sponsor:

COURSE INFORMATION:

Course Title: NEC Overview

New Course Submittal: \square Update Course: \square Prior Approval Number:
Purpose and Objective: The objective of this course is to take a high level overview of the NEC from cover to cover. This webinar will provide the attendee with tips on how to find information more efficiently. It will also cover how to get involved in the code-making process and review the history of the NEC. This course will cover the many popular articles and sections from all 8 chapters, Chapter 9 tables and various appendices.

Number of Instructional Contact Hours that can be obtained upon completion:
If Multi-Session, Number of Instructional Contact Hours Per Session:
Program Applicable for the Following Participants:

SUBMITTAL CHECKLIST:	Make Sure all of the Following Information is Submitted:	Check Off
Course Submitter:	Name of contact person and their certification numbers, organization, address, fax, phone	X
Course Sponsor:	Organization sponsoring or requesting the program (if any)	
Course Title:	Name of course (related to content)	x
Purpose/Objective:	Describe purpose and how course will improve competency of certification(s) listed	X
Contact Hours:	Indicate instructional time and credit requested in hours (e.g.: $0.5 \mathrm{hrr}, 1 \mathrm{hr}, 3.5 \mathrm{hrs}$)	X
Participants:	Check off each certification for which credit is requested (for which course relates to certification)	x
Content of Program:	Include collated agenda, time schedule, course outline; list specific sections of code, references, and topics covered	X
Course Materials:	Collated workbooks, handouts, hard copy or electronic versions of program is available	x
Instructor(s) Info.:	Resume of professional/educational qualifications \& teaching/training experience/BBS certifications	X
Test Materials:	Copy of quizzes or tests to be given	x
Completed Application:		x

NOTE: The Board does NOT grant retroactive approval for coursecpresented prior to approval date.

National Electrical Code Webinar Overview

Course Outline

(4 Code Credit Hours)

1. Objectives:
a. Learning how to navigate through the NEC
b. How to find information
c. Where to get help on the code if needed
2. How to Use Webinar: instructions
3. Introductions: Instructor and attendees
4. Poll:
a. What do you want to get out of this class?
b. What topics are you most interested in?
5. History of the NEC
6. The Code Cycle
7. The NEC Style Guide
8. NFPA website
a. Viewing standards
b. Public inputs
c. Temporary Interim Amendments (TIAs)
9. Table of Contents
10. Committees and Code-Making Panels
11. How to read the NEC
a. Chapters and Articles
b. Changes, deletions
c. Informational notes
d. References to standards
12. Article 90: Scope
13. Chapter 1: General
a. Article 100: Definitions
b. Article 110 Requirements for Electrical Installations
14. Chapter 2: Wiring and Protection
a. Article 210: Branch Circuits
b. Article 215: Feeders
c. Article 230: Services
d. Article 240: Overcurrent Protection
e. Article 242: Overvoltage Protection
f. Article 250: Grounding and Bonding

Henry Peter Matthews, PE, CPE, CESCP, PVA

Home Address
1203 McKinley Place
Fostoria, Ohio 44830
Email: hpmatthews@matthewselectrical.net
Home Phone: 419-701-7707
Cell Phone: 419-575-3488

Work Address
Marathon Petroleum Company
539 South Main Street
Findlay, Ohio 45840
Email: hpmatthews@marathonpetroleum.com
Office phone: 419-421-3423
Cell phone: 419-957-2110

Work Experience

Marathon Petroleum Company, LP; Findlay, Ohio

June 2006 - Present

- Advanced Senior Engineer/Electrical Specialist
- Electrical Engineering Supervisor - Terminal Engineering
- Project Engineer - Major Projects
- Electrical Designer - Retail Division

Cooper Standard Automotive, Bowling Green, Ohio
July 1993 - June 2006

- Plant Engineering Manager
- Plant Electrical Engineer

Toledo Engineering Company (consultant); Toledo, Ohio
June 1989 - July 1993

- Electrical Drafter

Education

Certifications
Bowling Green State University; Bowling Green, Ohio
Aug 2003
Masters of Business Administration
Pennsylvania State University; University Park, PA
Dec 1989
BS Electrical Engineering
Solar Energy International, Paonia, Colorado
Sept 2021
Solar PV Training

Owens Community College; Findlay, Ohio

April 2017
Certificate: Introductory Welding
Penn Foster Career School
July 2010
Certificate: Plumbing
Penn Foster Career School
October 2004
Certificate: Electrician
Professional Engineer (PE): $\mathrm{OH}, \mathrm{MI}, \mathrm{IN}, \mathrm{KY}, \mathrm{IL}, \mathrm{WI}$
Photovoltaic Associate (PVA) by NABCEP
Certified Electrical Safety Compliance Professional (CESCP), NFPA
Certified Plant Engineer (CPE): Association for Facility Engineers
Building Operator Certification (BOC): Northwest Energy Efficiency Council

Licenses	Ohio Electrical Contractor, Ohio Department of Commerce, License \# 46972 Ohio Training Agency, Ohio Construction Industry Licensing Board, Agency \#48714 Ohio Training Agency, Ohio Board of Building Standards
Special Training	Solar Energy International (SEI), Paonia, Colorado - Solar Electric and Design and Installation Course, April 2021, 60 hours - PV Systems Fundamentals (Battery-Based), June 2021, 40 hours - Advanced PV System Design and the NEC, June-July 2021, 60 hours - Comparing Battery Technologies, July 2021, 10 hours - Tools and Techniques for Operations and Maintenance of PV Systems, 9/21, 40 HR

Affiliations

Institute of Electrical and Electronics Engineers (IEEE) - Senior Member International Association of Electrical Inspectors (IAEI)
 NFPA Section Member for Architects, Engineers and Building Officials Illumination Engineering Society of North America (IESNA)

API RP 545 former Co-Chair, American Petroleum Institute, Lightning Protection for Above Ground Storage Tanks (2017-2018)

Business Matthews Electrical Services, Owner
Ownership
Designer Cuts Hair Salon, LLC; Co-owner

Biography

Henry has worked in the electrical, power, electronics, instrumentation, controls and communication fields for over 30 years. He earned his Bachelor of Science degree in Electrical Engineering from Penn State University in 1989. Henry worked as a consultant for Toledo Engineering Company in Toledo, Ohio as a drafter and field technician.

In 1993 he started working for Cooper Standard Automotive Company in Bowling Green, Ohio in 1993 as a Plant Electrical Engineer. He was then promoted to Plant Engineering Manager in 2000. During this time, he earned his Professional Engineering License in Ohio.

In 2003, Henry earned his MBA at Bowling Green State University.
In 2006, Henry joined Marathon Petroleum Company in Findlay, Ohio. He then went on to obtain his Professional Engineers license in Electrical Engineering for Michigan, Indiana, Illinois, West Virginia, Kentucky, Minnesota and Wisconsin. During his tenure at Marathon, Henry has had several roles including Electrical Design Engineer, Project Engineer and Electrical Supervisor. He is currently an Advanced Senior Engineer where he writes electrical standards for the company and conducts a community of practice for all the company's electrical engineers and safety professionals.

During his time at Cooper Standard Automotive and Marathon Petroleum, Henry developed a passion for teaching, learning and applying Electrical Construction Codes. At Cooper, he trained the entire non-electrical maintenance staff to perform basic electrical tasks.

At Marathon, Henry works with the Learning and Development Department to conduct multiple training sessions for new hires and seasoned engineers on various topics including Electrical Safety, Grounding and Bonding, Hazardous Area Location, Electrical Inspection, Motors, Lightning protection Static Electricity Mitigation, Reading and Understanding Electrical Diagrams, Programmable Logic Controllers and more.

Henry also works very closely with the Talent Acquisition Teams and visits numerous college campuses to deliver presentations on Engineering, Career Development, Networking and other topics.

Henry recently served as the Co-chair of the API Recommended Practice 545 Task Group for Lightning Mitigation for Above Ground Storage Tanks. In this role, he works with engineers, scientists and manufacturers from all over the world to evaluate the impacts of lightning and static electricity on metal above ground storage tanks.

His passion for teaching and Electrical Safety has motivated him to earn the Certified Electrical Safety Compliance Professional Certification (CESCP) from NFPA. He also regularly attends numerous electrical and safety conferences and training sessions conducted by NFPA, IEEE, API.

Previously, Henry was the President of the Fostoria, Ohio area Toastmasters team.
Henry is also a member of the International Association of Electrical Inspectors.
Henry also owns two small businesses:

Matthews Electrical Services - that performs mainly limited residential and small commercial electrical services and conducts training for licensed electricians in the state of Ohio.

Designer Cuts Hair Salon, LLC - Henry co-owns the beauty salon with his wife.

1

Webinar Rules

- Attendee must be present the entire time (except breaks)
- Webinar may be recorded
- Proof of attendance and participant identity
- Potential OCILB audits
- Turn webcam on after breaks and at end of class
- Instructor will periodically check for presence of all attendees
- Mute microphone at all times
- Prevents distraction during webinar
- Instructor may activate participant microphone if verbal response is needed

2

5

Disclaimer \#2

- The views and opinions presented in this class are those of Matthews Electrical Services and not necessarily those of the various entities the presenter represents or has previously or currently works for.
- The material used in this class is based on documented publiclyavailable information (NFPA, OSHA, IEEE etc.)
- The interpretation of this material is based on the presenters experience and training of the subject matter.

Disclaimer \#1

- I don’t know everything!
- It will be IMPOSSIBLE to learn everything about the NEC in 4 hours!
- But we'll try to cover the main points

6

Disclaimer \#3

- This presentation uses video and props from various electrical equipment manufacturers. This is not intended to endorse any particular products, vendors or manufacturers.
- The content is shown for educational purposes only.

9

National Fire Protection Agency (NFPA)

- Electric current creates heat
- Excessive heat can cause fire
- The NEC is born!

Videos

History of the NEC

- Sponsored by the National Fire Protection Agency (NFPA) since 1911
- Original version developed in 1897
- 2020 Version represents the $55^{\text {th }}$ edition
- Started 3-year cycle in 1975
- Prior to that it varied from 1 to 3 years

- https://www.youtube.com/watch?v=2Yn8RJiehEA\&list=PLGo9TRGbIRRuYlizFd ol5B5QlbBVNSwNg\&index=1
- Tour of the NEC
- https://www.nfpa.org/NEC/About-the-NEC

Recommendations for this Webinar

- Grab your NEC book if you have one
- Don't memorize sections
- Try to focus on NEC structure
- General Requirements (Chapters 1-4)
- Special Situations (Chapters 5-8)
- Additional Guidance (Ch 9 and Annexes)

How to Get Code Information

- NFPA: www.nfpa.org
- International Association of Electrical Inspectors (IAEI): www.iaei.org
- Electrical Safety Foundation International (ESFI): www.esfi.org
- Mike Holt Enterprises: www.mikeholt.com
- Ohio Board of Building Standards: https://codes.iccsafe.org/
- OSHA: www.OSHA.gov 1910.303 Subpart S

Other Information

- National Electrical Manufacturers Association: www.NEMA.org
- Institute of Electrical and Electronic Engineers: www.IEEE.org
- Underwriters Laboratories: www.ul.com

Math Basics

Ohms Law: V = I x R

- National Electrical Contractors Association: www.necanet.org
- Manufacturer Websites:
- Eaton, Schneider Electric (Square D), Siemens, Hubbell, Leviton, Appleton, Littelfuse etc.

Math Basics

Temperature Conversions

- Celsius (C) and Fahrenheit (F)
- C to $\mathrm{F}=\mathrm{C} \times 9 / 5+32$
- Example: $40^{\circ} \mathrm{C}=$
- $40 \times 9=360$
- $360 / 5=72$
- $72+32=104^{\circ} \mathrm{F}$
- F to $\mathrm{C}=(\mathrm{F}-32) \times 5 / 9$
- Example: $104^{\circ} \mathrm{F}=$
- 104-32 = 72
- $72 \times 5=360$
- $360 / 9=40^{\circ} \mathrm{C}$

Voltage and Current Analogy

minimin

OH No! Not Chemistry!

How Does Current Flow?

Insulators

Get Involved in the Code

Copyright@2013-2014, Physics and Radio-Electronics, All rights reserved

- https://www.youtube.com/watch?v=2Yn8RJiehEA\&list=PLGo9TRGbIRRuYliZFdol5B5QIbBVNS wNg\&index=1

NEC Structure

- Chapters
- Articles
- Parts
- Sections

Example:

Chapter 2: Wiring and Protection Article 250: Grounding and Bonding
Part II: System Grounding
Section 250.20: AC Systems to Be Grounded

How to use the Code

- https://www.youtube.com/watch? $\mathrm{y}=$ OVTS2yDIFM4\&t=1s

Navigating the National Electrical Code ${ }^{\circledR}$
 design specification or an instruction manual tor untrained persons. It is. in fract, a standard that contains the minimum requirementis tor feectrical an electricician, electricical contractor, inspecior, engineer, designer, or rinstructor:
Niblofolet
How to Use the NEC ${ }^{\circledR}$

Table of Contents

- Chapter 1: General
- Chapter 2: Wiring and Protection
- Chapter 3: Wiring Methods and Materials
- Chapter 4: Equipment for General Use
- Chapter 5: Special Occupancies
- Chapter 6: Special Equipment
- Chapter 7: Special Conditions
- Chapter 8: Communication Systems
- Chapter 9: Tables
- Annexes
- Index

Code-Making Panels (CMPs)

- 18 total
- Made up of:
- Manufacturer reps
- Power Company reps
- Laboratory reps
- Contractor
- Inspectors
- Union reps
- Training reps
- Organizations (IAEI, IEEE eg.)
- Requires consensus for change

41

Scope Change 90.2(A)(5)

- The NEC now covers the installation and supply of power from shore to ships and watercraft
- Installations used to export electric power from vehicles to premises wiring or for bi-directional current flow

https://www.youtube.com/watch?v=KSAxN25d18E\&t=17s

47

46

Chapter 1: General

- Article 100: Definitions
- Receptacle: A contact device installed at the outlet for the connection of electrical utilization equipment designed to mate with corresponding contact device with not other contact device on the same yoke or strap. A multiple receptacle is two or more contact devices on the same yoke or strap.

Chapter 1: General

- Article 100: Definitions
- Receptacle outlet: An outlet device where one or more receptacles are installed

Chapter 1: General

- Article 100: Definitions
- Outlet: A point on the wiring system at which current is taken to supply utilization equipment

50

Service

- The conductors and equipment connecting the servicing utility to the wiring system of the premises served.

Service Equipment

- The necessary equipment, consisting of a circuit breaker(s) or switch(es) and fuse(s) and their accessories, connected to the serving utility and intended to constitute the main control and disconnect of the serving utility.

Service Point

- The point of connection between the facilities of the serving utility and the premises wiring

www.iaei.org

Typical Overhead Service Components

Article 100: Service Point

The service point defines the responsibilities between the utility provider and the customer

www.iaei.org

Service Conductors

- The conductors from the service point to the service disconnecting means

Why is This Important?

- Determine whether equipment is a fed from utility or separately derived system
- Demarcation between service conductors and feeders
- Ownership of equipment
- Labeling and marking
- Rating of equipment: Short Circuit Current Rating (SCCR)

58

Article 110: Requirements for Electrical Installations

- 110.3(B) Equipment that is listed, labeled, or both shall be installed and used in accordance with any instructions included in the listing or labeling.

Article 110: Requirements for Electrical Installations

- Examination, Identification, Installation, Use and Listing of Equipment
- Arc Flash Hazard Warning
- Equipment marking
- Working spaces
- Enclosure selection: Table 110.28

Article 110: Requirements for Electrical Installations

- 110.12 Mechanical Execution of Work
- Electrical Equipment shall be installed in a neat and workmanlike manner.

Chapter 2: Wiring and Protection

Chapter 2: Wiring and Protection

- What's in this chapter?
- Article 200: Use and ID of Grounded Conductors (Neutrals)
- Article 210: Branch Circuits
- 210.8 GFCls
- 210.12 AFCIs
- 210.13 GFPEs
- 210.50 Receptacle Outlets
- Article 215: Feeders
- Article 220: Branch-Circuit Feeder, and Service Load Calculations
- Article 225: Outside Branch Circuits and Feeders
- Article 230: Services
- Article 240: Overcurrent Protection
- Article 242: Overvoltage Protection
- Article 250: Grounding and Bonding

Dwelling Unit GFCI requirements	Article 210.8(A)
Bathrooms	$210.8(\mathrm{~A})(1)$
Garages and Accessory Buildings	$210.8(\mathrm{~A})(2)$
Outdoors	$210.8(\mathrm{~A})(3)$
Crawl Spaces	$210.8(\mathrm{~A})(4)$
Basements (finished and unfinished)	$210.8(\mathrm{~A})(5)$
Kitchens	$210.8(\mathrm{~A})(6)$
Sinks	$210.8(\mathrm{~A})(7)$
Boathouses	$210.8(\mathrm{~A})(8)$
Bathtubs and shower stalls	$210.8(\mathrm{~A})(9)$
Laundry Areas	$210.8(\mathrm{~A})(10)$
Indoor Damp and Wet Locations (new)	$210.8(\mathrm{~A})(11)$
Boast Hoist	555.9

FOR INFORMATONAL PURPOSES ONLY. NOT CURRENT CODE III
68

GFCI Requirements for Other Than Dwelling Units	
Bathrooms	Article 210．8（B）
Kitchens or areas with sink and permanent provisions for food preparation or cooking	$210.8(\mathrm{BB)(1)}$
Rooftops	$210.8(\mathrm{~B})(2)$
Outdoors	$210.8(\mathrm{~B})(3)$
Sinks	$210.8(\mathrm{~B})(4)$
Indoor damp and wet locations	$210.8(\mathrm{~B})(5)$
Locker rooms with shower facilities	$210.8(\mathrm{~B})(6)$
Garages and accessory buildings	$210.8(\mathrm{~B})(7)$
Crawl Spaces－at or below grade	$210.8(\mathrm{~B})(8)$
Unfinished areas of basements	$210.8(\mathrm{~B})(9)$
Laundry areas	$210.8(\mathrm{~B})(10)$
Bathtubs and Shower Stalls	$210.8(\mathrm{~B})(11)$

69

UNITED STATES
DEPARTMENT OF LABOR
Occupational Safety and Health Administration

fソ®ロロロ

－	1	200376515	09／06／2013	0454510	x	7623	Employee Electrocuted While Rewring Air Conditioner
\bigcirc	2	202553525	10／14／2011	0950631		8062	Worker Amputatos Fingortip While Servicing Air Conditioner
－	3	200103711	08／06／2010	0522300	x	8744	Employee is Electrocuted While Working On Air Conditioner
－	4	202080560	07／26／20010	0453730	x	7623	Employee is Killed While Sevicing Air Conditioner
－	5	200002954	11／05／2009	0728500	x	1711	Employee is Electrocuted While Servicing Air Conditioner
－	6	200713584	02／12／2009	063690	x	3585	Employee Is Killed While Replacing Filter In Air Conditioner
－	7	200374023	08／08／2006	0454510	x	7011	Employee Is Electrocuted While Servicing Air Conditioner
\bigcirc	8	202004776	08／03／2006	0317000	x	3699	Employee Is Electrocuted While Servicing Air Conditioner
\bigcirc	9	201923893	07／06／2006	0626700	x	1711	Employee Electrocuted While Installing Air Conditioner
－	10	200373736	11／07／2005	0454510	x	4961	Employee Killed By Falling Air Conditioner
\square	11	200211746	05／13／2005	0626000	x	7623	Employee Is Killed While Installing Air Conditioner In Attic
－	12	200993301	06／01／2004	0551800	x	1711	Employee Electrocuted While Reparing Air Conditioner
\square	${ }^{13}$	201158219	09／23／2003	0950633		3716	Employee Struck By Falling Air Conditioner

70

GFCI Requirements Common to Both Dwelling and Non－Dwelling Units		Articles
Crawl Space lighting outlets		$210.8(\mathrm{C})$
Specific Appliances		$210.8(\mathrm{D})$
Equipment Requiring Servicing		$210.8(\mathrm{E})$ and 210．63
Outdoor Outlets	\triangle	$210.8(\mathrm{~F})$
Sumps Pumps		$422.5(\mathrm{~A})(6)$
Dishwashers	$422.5(\mathrm{~A})(7)$	
Docks，marinas，boatyards etc．	\triangle	Article 555
Swimming Pools，Spas，hot tubs，baptismal pools，splash ponds，etc．	\triangle	Article 680

Area	AfC Codereferene
Kity	(200.12(1)
betioem	${ }^{2120.12(2)}$
Come	${ }_{\substack{20.1212() \\ 20.12(4)}}^{2}$
${ }_{\text {ramily }}^{\text {coom }}$	${ }^{20.1212(4)}$
cter	(20.12(1)(
	(20.12(1)
${ }^{\text {Den }}$	${ }^{21012012(1)}$
${ }_{\substack{\text { sumoom } \\ \text { Receation Room }}}$	
Domitery unis	${ }^{210.102128)}$
	$\underset{\substack{20.12181) \\ 20.12(0)}}{ }$
Hoele Uests ooms and stutes	21012120

- Number of supplies
- Alert! Section 225.30(B) Common Supply Equipment
- Disconnects

Article 220: Calculations

- Lighting Loads: Non-Dwelling and Dwelling Units
- Demand factors
- Feeder and Service Load Calculations: 2 types permitted
- Part III:
- Part IV: Alternative Method
- Square D: 2020 Load Calculations 220.12:
- https://www.youtube.com/watch?v=mmxEdxZsNd0\&list=PLGo9TRGbIRRuYliz Fdol5B5QlbBVNSwNg\&index=5

73

Article 225: Outside Branch Circuits and Feeders

- Clearances
- Protection

230.85 Emergency Disconnects

- https://www.youtube.com/watch?v=J6xfGKSLSf4 Square D
- https://www.youtube.com/watch?v=3EU9aOjWW4c NFPA

Article 240 Overcurrent Protection

- Overcurrent Devices Rated 800A or less
- Overcurrent maximum limit for small conductors -240.3(D)
- 14 AWG Copper: 15 amps
- 12 AWG Copper: 20 amps
- 10 AWG Copper: 30 amps
- Feeder Tap rule: 240.21(B)
- Tap Conductor (240.2): A conductor, other than a service conductor, that have overcurrent protection ahead of its point of supply that exceeds the value permitted for similar conductors that are protected as described elsewhere in 240.4

Tap Rules

- Taps not over 10 ft long
- Conductor ampacity cannot be less than $1 / 10$ of the feeder O / C device rating
- Taps not over 25 ft long
- Conductor ampacity cannot be less than $1 / 3$ of the feeder O/C device rating
- Taps supplying a transformer not over 25 feet long
- Primary conductors have a minimum ampacity of $1 / 3$ the $0 / C$ rating protecting the feeders
Secondary conductors have an ampacity not less than transformer turns ratio multiplied by $1 / 3$ the rating of the O/C device protecting the feeders.

Tap Rules

- Objectives: all wires shall be protected from overcurrent at their source
- However, taps are not or can't be protected at their source. Examples
- Wires originating from power block
- Wires originating from transformer secondaries

Article 242 Overvoltage Protection (New)

- Covers
- overcurrent protection devices
- Surge Protective Devices (SPDs) , less than or equal to 1000 V
- Surge Arrestors, greater than 1000V

Bonding Example (After)

Bonding Example (Before)
\square
100 V

Grounding Example (Before)

Grounding Example (Before)
\qquad

88

Grounding Example (After)

91

Grounding and Bonding Example (Before)

FACT SHEET

ELECTRICAL BONDING OF GAS PIPING SYSTEMS ${ }_{\text {reve.0.0.-17 }}$

AGA

American Gas Association
$7.12 .2 *$ CSST. CSST gas piping systems and gas piping systems
containing one or more segment of CSST, shall be electrically continuous and bonded to the electrical service grounding electrode system or where provided, lighhtring protection grounding electrode system.
7.12.2.1 The bonding jumper shall connect to a metallic pipe, pipe fitting, or CSST fitting.
7.12.2.2 The bonding jumper shall not be smaller than 6 AWG 7.12.2.2 The bonding jumpe
copper wire or equivalent.
7.12.2.3 The length of the jumper between the connection to the gas 12.2.3 The length of the jumper between the connection to the gas piping system and the errounding electrode system shall not exceed
$75 \mathrm{ft}(22 \mathrm{~m})$. Any addititonal grounding electrodes installed to meet this requirement shall be bonded to the electrical service grounding electrode system or where provided, lightring protection grounding electrode system.
7.12.2.4 Bonding connections shall be in accordance with NFPA 70 ,
National Electrical Code ${ }^{8}$. National Electrical Code ${ }^{\text {e }}$.
7.12.2.5 Devices used for the bonding connection shall be listed for
the application in accordance with UU 467 , Grounding and the application in
Bonding Equipment.
7.12.3 Arc Resistant Jacketed CSST. CSST listed with an arc resistant jacket or coating system in accordance with ANSI LC 1/CSA 6.26 Fuel Gas Piping Systems Using Corrugated Stainless

CSST Gas Line - 250.104B

- Shall be bonded to the grounding system
- NOTE: CHECK WITH LOCAL AHJ, GAS COMPANY AND ELECTRIC UTILITY
- Who will do the bonding? Gas company, plumber, electrician?
- https://www.youtube.com/watch?v=7QiNMnDdXQ8

Another One of My Favorites!

- Eaton
- https://www.youtube.com/watch?v=JGf-
bhHEt9Y\&list=PL8XobqCtN9Z9zmxXF91EJpX2k8FjdRIEb\&index=11
- Equipment Bonding: https://www.mikeholt.com/tv-nec.php
- What is the sphere of influence?
- What is the Sphere of Influence? - YouTube
- What is a grounding electrode?
- What is a Grounding Electrode? - YouTube
- What is a fault current path?
- https://www.youtube.com/watch?v=V9Gf55DxSao\&t=22s

99

THE REORGANIZATION OF NEC ARTICLE
310
coots and stanoaros suly/auoust roz1 keith loflano

100

Conductor Insulation Identification

Letter	Description
No H	60 degree C insulation rating
H	75 degree C insulation rating
HH	90 degree C insulation rating permitted in dry locations
-2	90 degree C insulation rating permitted in wet locations
N	Nylon outer cover
T	Thermoplastic Insulation
R	Rubber Insulation
X	Cross-linked polyethylene insulation
U	Underground
W	Permitted in Wet or Damp locations

Article 311: Medium Voltage Conductors and Cable

- New section
- Scope: Medium Voltage Cables (MV): 2001 V up to $35,000 \mathrm{~V}$ nominal
- Multiple tables

Article 310: Conductors for General Wiring

- 12 tables (not all are listed below)
- Table 310.4(A) Conductor Applications and Insulation Rated 600 Volts
- Table 310.12 Single-Phase Dwelling Services and Feeders
- Table 310.15(B)(1) \& (B)(2) Ambient Temperature Correction Factors
- Table 310.15(C)(1) Adjustment Factors for More than 3 Current-Carrying Conductors
- Table 310.16 Ampacity of Insulated Conductors with not More Than Three Current-Carrying Conductors in Raceway, Cable or Earth (Directly Buried)
- Table 310.17 Ampacities of Single-Insulated Conductors in Free Air

Chapter 3 Wiring Methods and Material

- Article 300: General Requirements for Wiring Methods and Materials
- Article 310: Conductors for General Wiring
- Article 311: Medium Voltage Conductors and Cable
- Article 312: Cabinets, Cutout Boxes and Meter Socket Enclosures
- Article 314: Outlet, Device, Pull and Junction Boxes; Conduit Bodies; Fittings; and Handhole Enclosures

Chapter 3 Wiring Methods and Material

- Article 320: Armored Cable: Type AC
- Article 322: Flat Cable Assemblies: Type FC
- Article 324: Flat Conductor Cable: Type FCC
- Article 326: Integrated Gas Spacer Cable: Type ICS
- Article 330: Metal-Clad: Type MC
- Article 332: Mineral-Insulated, Metal-Sheathed Cable: Type MI
- Article 334: Nonmetallic-Sheathed Cable: Types NM and NMC
- Article 336: Power and Control Tray Cable: Type TC

Chapter 3 Wiring Methods and Material

- Article 353: High Density Polyethylene Conduit: Type HDPE Conduit
- Article 354: Nonmetallic Underground Conduit with Conductors: Type NUCC
- Article 355: Reinforced Thermosetting Resin Conduit: Type RTRC aka Fiberglass
- Article 356: Liquidtight Flexible Nonmetallic Conduit: Type LFNC
- Article 358: Electrical Metallic Tubing: Type EMT
- Article 360: Flexible Metallic Tubing: Type FMT

Chapter 3 Wiring Methods and Material

- Article 337: Type P Cable
- Article 338: Service-Entrance Cable: Types SE and USE
- Article 340: Underground Feeder and Branch-Circuit Cable: Type UF
- Article 342: Intermediate Metal Conduit: Type IMC
- Article 344: Rigid Metal Conduit: Type RMC
- Article 348: Flexible Metal Conduit: Type FMC
- Article 350: Liquidtight Flexible Metal Conduit: Type LFMC
- Article 352: Rigid Polyvinyl Chloride Conduit: Type PVC

108

Chapter 3 Wiring Methods and Material

- Article 362: Electrical Nonmetallic Tubing: Type ENT
- Article 366: Auxiliary Gutters
- Article 368: Busways
- Article 370: Cablebus
- Article 372: Cellular Concrete Floor Raceways
- Article 374: Cellular Metal Floor Raceways
- Article 376: Metal Wireways
- Article 378: Nonmetallic Wireways

Chapter 3 Wiring Methods and Material

- Article 380: Multioutlet Assembly
- Article 382: Nonmetallic Extensions
- Article 384: Strut-Type Channel Raceway
- Article 386: Surface Metal Raceways
- Article 388: Surface Nonmetallic Raceways
- Article 390: Underfloor Raceways
- Article 392: Cable Trays
- Article 393: Low-Voltage Suspended Ceiling Power Distribution Systems

Chapter 3 Wiring Methods and Material

- Article 394: Concealed Knob-and-Tube Wiring
- Article 396: Messenger-Supported Wiring
- Article 398: Open Wiring on Insulator
- Article 399: Outdoor Overhead Conductors Over 1000 volts

Chapter 4: Equipment for General Use

- Article 400: Flexible Cords and Flexible Cables
- Table 400.4 Flexible Cords and Flexible Cables
- Article 402: Fixture Wires
- Table 402.3 Fixture wires
- Article 404: Switches
- Article 406: Receptacles, Cord Connectors, and Attachment Plugs (Caps)
- 406.12 Tamper Resistant Receptacles
- https://www.mikeholt.com/tv-nec.php

Tamper Resistant Receptacles	Reference
Dwelling units including	$406.12(1)$
Attached and detached garages and accessory buildings to dwelling units	$406.12(1)$
Common areas of multifamily dwellings	$406.12(1)$
Guest rooms and guest suites of hotels, motels, and their common area	$406.12(2)$
Child care facilities	$406.12(3)$
Preschools and Education facilities	$406.12(4)$
Business office, corridors, waiting rooms and the like in clinics, medical and dental offices, and outpatient facilities	$406.12(5)$
Subset of assemblies occupancies described in 518.2 to include places of awaiting transportation, gyms, skating rinks and auditoriums	$406.12(6)$
Dormitory Units	$406.12(7)$
Assisted Living Facilities	$406.12(8)$

Article 410, part XVI - Horticultural Lighting Equipment

- Type of Change: New
- 2020 NEC: new section added to for Horticultural Lighting Equipment
- Reason: due to the advent of special plant growth (legal marijuana for example) LED sources and discharge lamps, and the increase of indoor plant growing facilities, horticultural lighting equipment is a rapidly expanding technology.

Horticultural Lighting
 NFPA Journal, (May-June 2018)

Another issue the 2020 NEC may address is horticultural lighting. As marijuana legalization sweeps the country, marijuana grow facilities are becoming an electrical safety concern for many enforcers. (NFPA Journal covered the fire hazards of the cannabis industry in its September/October 2016 cover story, "Growing Pains.") There's nothing especially unique happening electrically, but it's an intense load. A 2016 article in The Guardian shed light on how energy intensive grow operations can be. In Boulder County, Colorado, for example, one 5,000 square-foot grow facility was found to be consuming about 29,000 kilowatt hours of electricity each month-by comparison, a nearby household in the county used less than 1,000 kilowatt hours, according to the article.

```
NFPA Marijuana growing
https://www.youtube.com/watch?time_continue=2&v=yJFtXGJkw5s&feature=emb_logo
https://www.youtube.com/watch?v=aPN515kFgh4
```

FOR INFORMATIONAL PURPOSES ONLY. NOT CURRENT CODE IN

Chapter 4: Equipment for General Use

- Article 430: Motors, Motor Circuits, and Controllers
- Table 430.7(B) Locked-Rotor Indicating Code Letters
- Table 430.10 (B) Minimum Wire-Bending Space at the Terminals of Enclosed Motor Controllers
- Part II. Motor Circuit Conductors

Part III. Motor and Branch Circuit Overload Protection
Part IV. Motor Branch-Circuit Short-Circuit and Ground-Fault Protection

- Part V. Motor Feeder Short-Circuit and Ground-Fault Protection

Part VI. Motor Control Circuits

- Part VII. Motor Controllers
- Part VIII. Motor Control Centers

Chapter 4: Equipment for General Use

- Article 424: Fixed Electric Space-Heating Equipment
- Article 425: Fixed Resistance and Electrode Industrial Process Heating Equipment
- Article 426: Fixed Outdoor Electric Deicing and Snow Melting Equipment
- Article 427: Fixed Electric Heating Equipment for Pipelines and Vessels

Chapter 4: Equipment for General Use

- Article 430: Motors, Motor Circuits, and Controllers
- Part IX. Disconnecting Means
- Part X. Adjustable-Speed Drives
- Part XI. Over 1000 Volts, Nominal
- Part XII. Protection of Live Parts - All Voltages
- Part XIII. Grounding - All Voltages

Article 430 Motors

- Motors present unique challenges

Article 430 Motors

- High starting (inrush current)
- Challenges (continued)
- Safety: stopping, torque, speed control, guarding moving parts
- Lots of energy: inductive
- Produce heat
- Vibration: impacts connections and cabling
- Impacts power factor
- What is a motor running backwards?

Chapter 4: Equipment for General Use

- Article 430: Motors, Motor Circuits, and Controllers
- Part XIV. Tables

Transformers

Article 450 Transformers and Transformer Vaults

- Transformers present unique challenges - Highly inductive
- Source of energy
- High inrush, similar to a motor
- how to energize transformer without tripping
- Protecting the transformer
- Primary-side protection
- Secondary-side protection
- Primary and secondary side protection
- Protecting the secondary conductors
- Produces Heat

Chapter 5: Special Occupancies

Chapter 5: Special Occupancies

- Article 500: Hazardous (Classified) Locations, Classes I, II and III, Divisions 1 and 2
- Article 501: Class I Locations
- Article 502: Class II Locations
- Article 503: Class III Locations
- Article 504: Intrinsically Safe Systems
- Article 505: Zone 0, 1 and 2 Locations
- Article 506: Zone 20, 21, and 22 Locations for Combustible Dusts or Ignitible Fibers/Flyings

Chapter 5: Special Occupancies

- Article 510: Hazardous (Classified) Locations - Specific
- Article 511: Commercial Garages, Repair and Storage
- Article 513: Aircraft Hangers
- Article 514: Motor Fuel Dispensing Facilities
- Article 515: Bulk Storage Plants
- Article 516: Spray Application, Dipping, Coating and Printing

Processes Using Flammable or Combustible Materials

Chapter 5 GFCI Requirements

Requirement		Article
Commercial Garages		511.12
Agricultural Buildings	\triangle	$547.5(\mathrm{G})$
Mobile Homes, Manufactured Homes, Mobile Homes	\triangle	550.13(B)

Chapter 5: Special Occupancies

- Article 545 Manufactured Buildings and Relocatable Structures
- Article 547: Agricultural Buildings
- Article 550: Mobile Homes, Manufactured Homes and Mobile Home Parks

555.35 GFCI and GFPE Requirements for Marinas, Boatyards, Docking FacilitiesLo			
Location	Type	Protection (trip) Level	Reference
Shore power receptacles	GFPE	30 ma	$555.35(\mathrm{~A})$
15A, 20A receptacles other than shore power	GFCI (Type A)	$4-6 \mathrm{ma}$	$555.35(\mathrm{~B})$
Main, feeder, and branch circuits installed on docking facilities*	GFPE	100 ma	$555.35(\mathrm{C})$

- Article 551: Recreational Vehicles and Recreational Vehicle Parks
https://www.youtube.com/watch?v=bNNTIhKRe-g
- Article 552: Park Trailers
- Article 555: Marinas, Boatyards, Floating Buildings, and Commercial and Noncommercial Docking Facilities
* Exception: transformer secondaries of separately derived systems where secondary conductors exceed 10 ft installed in raceway

143

Chapter 6: Special Equipment

- Article 625: Electric Vehicle Power Transfer System
- Article 626: Electrified Truck Parking Spaces
- Article 630: Electric Welders
- https://www.youtube.com/watch?v=|gbGs B8Puc\&feature=emb logo

147

Chapter 6: Special Equipment

- Article 650: Pipe Organs
- Article 660: X-Ray Equipment
- Article 665: Induction and Dielectric Heating Equipment
- Article 668: Electrolytic Cells
- Article 669: Electroplating
- Article 670: Industrial Machinery

Chapter 6: Special Equipment

- Article 640: Audio Signal Processing, Amplification, and Reproduction Equipment
- Article 645: Information Technology Equipment
- Article 646: Modular Data Centers
- Article 647: Sensitive Electronic Equipment

Chapter 6 GFCI Requirements

Requirement		Reference
Elevator Pits, Hoistways, Dumbwaiters etc.	\triangle	620.6
Electric Vehicle Charging Equipment	\triangle	625.54
Storable and Portable Immersion Pools		680.35
Permanently Installed Immersion Pools		680.45
Fountains including Splash Pads	\triangle	680.50
Pool motors	\triangle	680.21 (C)
Pool pump motor replacements		680.21 (D)
Pool equipment room		$680.22($ A)(5)
Permanently Installed Non-submersible pumps		680.59
Natural and Artificially Made Bodies of Water	\triangle	682.15

Chapter 6: Special Equipment

- Article 675: Electrically Driven or Controlled Irrigation Machines

Chapter 6: Special Equipment

- Article 685: Integrated Electrical Systems
- Article 690: Solar Photovoltaic (PV) Systems
- Article 691: Large Scale Photovoltaic (PV) Electric Supply Stations
- Article 692: Fuel Cell Systems
- Article 694: Wind Electric Systems
- Article 695: Fire Pumps

Safety

- Can generate high levels of DC current
- Solar panels can generate power with low levels of light.
- AFCls required for DC circuits over 80V (690.11) - note exception
- Rapid shutdown requirements for systems on buildings (690.12) - Goal - protect firefighters, note exception
- External disconnect requirements

Article 690: Solar Photovoltaic (PV) Systems

- Part I: General (definitions)
- Part II: Circuit Requirements
- Maximum voltage: no greater than 1000 V (690.7)
- One and two-family dwelling units limited to 600v.
- Limited to 1500 VDC when not located on or in buildings
- Good reference:
- Photovoltaic Array Performance Model (SAND 2004-3535)
- Sandia National Laboratories

Chapter 7:
Special
Conditions

159

Energy Storage Systems (ESS)

- The rapid development and deployment of energy storage systems present unique hazards to electricians and first responders.
https://www.nfpa.org/ess

Chapter 7

-700.2 Emergency Systems Definition

- Emergency System, Classification [700.2]-YouTube
- 725.1 Class 1, Class 2, Class 3 Remote-Control, Signaling and PowerLimited Circuits
- https://www.youtube.com/watch?v=0j|Xmj-LdNQ
- 706.1 Energy Storage Systems
- https://www.youtube.com/watch?v=Wp5qkrV7tAY\&feature=emb logo\&app= desktop

Chapter 7: Special Conditions

- Article 700: Emergency Systems
- Article 701: Legally Required Standby Systems
- Article 702: Optional Standby Systems
- Article 705: Interconnected Electric Power Production Sources
- Works closely with Article 690: PV Systems
- Lots of new stuff in this article for 2020!
- Part II. Microgrids
- Article 706: Energy Storage Systems
- Also works closely with PV systems

Chapter 7: Special Conditions

- Article 708: Critical Operations Power Systems (COPS)
- Determined by municipal, state, federal or other governmental agencies
- Examples: power systems, HVAC, fire alarm, security, communications etc.
- Article 710: Stand Alone Systems
- Article 712: Direct Current Microgrids
- Article 720: Circuits and Equipment Operating at Less Than 50 Volts
- Article 725: Class 1, Class 2 and Class 3 Remote-Control, Signaling and Power-Limited Circuits
- Different from minimum wire sizes, ampacity and adjustment and correction factors, overcurrent protection, insulation requirements and others from chapters 1-4.

Chapter 8:
 Communications Systems

Chapter 8: Communications Systems

- Article 800: General Requirements for Communication Systems (NEW)
- Article 805: Communication Circuits
- Article 810: Radio and Television Equipment
- Article 820: Community Antenna Television and Radio Distribution Equipment
- Article 830: Network-Powered Broadband Communications Systems
- Article 840: Premises-Powered Broadband Communications System

Chapter 9: Tables

- Table 10: Conductor Stranding
- Table 11(A): Class 2 and Class 3 AC Power Source Limitations
- Table 11(B): Class 2 and Class 3 DC Power Source Limitations

Informative

- Table 12(A): PLFA AC Power Source Limitations
- Table 12(B): PLFA DC Power Source Limitations

176

$$
\begin{aligned}
& \text { A Certificate of Completion will be emailed to those who successfully completed } \\
& \text { course }
\end{aligned}
$$

..- Contact instructor at hpmatthews@matthewselectrical.net for any questions or comments

Make sure you completely sign out of webinar after the next slide!

File Attachments for Item:

ER-5 2020 NEC Review (International Association of Electrical Inspectors)
All certifications except plumbing and IU (30 hours in four 7.5-hour sessions)
Staff Notes: Add NRIUI, RIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:

APPLICATION
 FOR

Board of Building Standards

6606 Tussing Road, P.O. Box 4009
Reynoldsburg, Ohio 43068-9009
(614) 644-2613 Fax: (614) 644-3147
dic.bbs(a)com,state.oh.us
www.com.state.oh.us/dic/dicbbs.htm
Continuing Education
Course Approval
COURSE SUBMITTER:
Course Submitter:_Lorenzo Adam

Organization:	Comioc

Continuing education programs approved for education credit by the Ohio Board of Building Standards may be used for compliance with certification requirements related to code enforcement, plan review, and inspection responsibilities. The credit is to be used to renew the certifications issued by the Ohio Board of Building Standards pursuant to section $3781.10(\mathrm{E})$ ORC.
.

SUBMITTALCHECKLLST:	Make Sure all of the Following Infornation is Submitted:	
Course Submitter:	Name of contact person and their certification numbers, organization, address, fax, phone	
Course Sponsor:	Organization sponsoring or requesting the program (if any)	
Course Title:	Name of course (related to content)	
Purpose/Objective:	Describe purpose and how course will improve competency of certification(s) listed	
Contact Fours:	Indicate instructional time and credit requested in hours (e.g.: $0.5 \mathrm{hr}, 1 \mathrm{hr}, 3.5$ hrs)	
Particlpants:	Check off each certification for which credit is requested (for which course relates to certification)	
Content of Program:	Include collated agenda, time schedule, course outline; list specific sections of code, references, and topics covered	
Course Materials:	Collated workbooks, landouts, hard copy or electronic versions of program is available	
Instructor(s) Info.:	Resume of professional/educational qualifications $\&$ tesching/training experience/BBS certifications	
Test Materinls:	Copy of quizzes or tests to be given	
Completed Application:		

NOTE: The Board does NOT grant retroactive approval for courses presented prior to approval date.

2022 30-Hour Course

Sponsored by Southwest Division Ohio IAEI

Facility

The facility is conveniently located in Mason, about 1 mile from I-71 and 3 miles from 1-75. Classes are held at the City of Mason, Community Room, 6000 MasonMontgomery Rd., Mason, Ohio. The room occupancy is good for 100 students comfortably with tables and chairs. There are provisions for audio-visual equipment (screen, microphone, and speakers). Restrooms are located nearby the room for females and males. Refreshments are served during the morning. Duration of the instruction is 7.5 hours. 7:30am - 4:00pm.

Course Materials

Every attendee is responsible for bringing an edition of the 2017 and 2020 NEC. The instructors will also have on hand the necessary references to answer questions about other codes or standards. Most of the presentations are on a slide-format (Power Point).

2020 NEC REVIEW

Agenda for September 10 th, 2022

Insłructors: Dewayne Jenkins, Gaylord Poe, Cały Robinson, Lorenzo Adam, Pete Baldauf.

7:00-7:30 am	Registration
$7: 30-9: 30 \mathrm{~cm}$	NEC Review Chapters 1
$9: 30-9: 40 \mathrm{am}$	Break
$9: 40-12: 00 \mathrm{~m}$	NEC Review Chapters 1
$12: 00-1: 00 \mathrm{pm}$	Lunch Break
$1: 00-2: 35 \mathrm{pm}$	NEC Review Chapters 2
$2: 35-2: 45 \mathrm{pm}$	Break
$2: 45-4: 00 \mathrm{pm}$	NEC Review Chapters 2

2020 NEC REVIEW

Course outline for September $10^{\text {th }}, 2022$

This first Saturday will cover Changes in Chapters 1 and 2 of the 2020 NEC. The instruction will include the proper use and limitations for material and equipment used for electrical installations and the requirements for compliance with the NEC.

The instructor will also emphasize the importance of the changes and it affects future code proposals.

- Chapter 1. General
- Articles 100 and 110
- Chapter 2. Wiring and Protection.
- Articles 210-220-225-230

The presentation will be in Power Point format. Contractors and ESIs will benefit as well as Plans Examiners and Professional Designers by getting first-hand information on these changes. Both, the Ohio Building Code, and the Residentiak Code of Ohio, in chapters 27 and 33 respectively refers to 2017 NFPA 70 as the standard to comply with electrical installations.
Even though the State of Ohio has not adopted the 2020 NFPA 70 version, the purpose of this class is to update the attendees on the code changes and not on the enforcement.

2020 NEC REVIEW

Agenda for October $8^{\text {th }}, 2022$
Instructors: Dewayne Jenkins, Gaylord Poe, Caty Robinson, Lorenzo Adam, Pete Baldauf.

$7: 00-7: 30 \mathrm{~cm}$	Registration
$7: 30-9: 30 \mathrm{~cm}$	NEC Review Chapters 3
$9: 30-9: 40 \mathrm{~cm}$	Break
$9: 40-12: 00 \mathrm{~m}$	NEC Review Chapiers 3
$12: 00-1: 00 \mathrm{pm}$	Lunch Break
$1: 00-2: 35 \mathrm{pm}$	NEC Review Chapters 4
$2: 35-2: 45 \mathrm{pm}$	Break
$2: 45-4: 00 \mathrm{pm}$	NEC Review Chapters 4

2020 NEC REVIEW

Course outline for October 8 ${ }^{\text {th }}, 2022$

This second Saturday will cover Changes in Chapter 3 through 4 of the 2020 NEC. The instruction will include the proper use and limitations for material and equipment used for electrical installations and the requirements for compliance with the NEC.

The instructor will also emphasize the importance of the changes.

- Chapter 3. Wiring Methods and Materials.
- Article 300
- Chapter 4. Equipment.
- Articles 400-404-406-410-422-440-445-450

The presentation will be in Power Point format. Contractors and ESIs will benefit as well as Plans Examiners and Professional Designers by getting first-hand information on these changes. Both, the Ohio Building Code, and the Residential Code of Ohio, in chapters 27 and 33 respectively refers to 2017 NFPA 70 as the standard to comply with electrical installations.
Even though the State of Ohio has not adopted the 2020 NFPA 70 version, the purpose of this class is to update the attendees on the code changes and not on the enforcement.

Agenda for November 12 ${ }^{\text {th }}, 2022$
Instructors: Dewayne Jenkins, Gaylord Poe, Caty Robinson, Lorenzo Adam, Pete Baldauf.

7:00-7:30 am	Registration
7:30-9:30 am	NEC Review Chapters 5
9:30-9:40 am	Break
9:40-12:00 m	NEC Review Chapters 5
$12: 00-1: 00 \mathrm{pm}$	Lunch Break
$1: 00-2: 35 \mathrm{pm}$	NEC Review Chapters 6
$2: 35-\mathbf{2 : 4 5} \mathrm{pm}$	Break
$2: 45-4: 00 \mathrm{pm}$	NEC Review Chapters 6

2020 NEC REVIEW

Course outline for November 12 it, 2022

This third Saturday will cover Changes in Chapter 5 and 6 of the 2020 NEC. The instruction will include the proper use and limitations for material and equipment used for electrical installations and the requirements for compliance with the NEC.

The instructor will also emphasize the importance of the changes.

- Chapter 5. Special Occupancies.
- Articles 500-511-514-517-525-590
- Chapter 6. Special Equipment.
- Article 600-625

The presentation will be in Power Point format. Contractors and ESIs will benefit as well as Plans Examiners and Professional Designers by getting first-hand information on these changes. Both, the Ohio Building Code, and the Residential Code of Ohio, in chapters 27 and 33 respectively refers to 2017 NFPA 70 as the standard to comply with electrical installations.
Even though the State of Ohio has not adopted the 2020 NFPA 70 version, the purpose of this class is to update the attendees on the code changes and not on the enforcement.

2020 NEC REVIEW

Agenda for December 10th, 2022
Instructors: Dewayne Jenkins, Gaylord Poe, Caty Robinson, Lorenzo Adam, Pete Baldauf.

7:00-7:30 am	Registration
7:30-9:30 am	NEC Review Chapters 7
9:30-9:40 am	Break
9:40-12:00 m	NEC Revlew Chapters 7
12:00-1:00 pm	Lunch Break
1:00-2:35 pm	NEC Review Chapters 8
2:35-2:45 pm	Break
2:45-4:00 pm	NEC Review Chapters 8

2020 NEC REVIEW

Course outline for December $10^{\text {th }}, 2022$

This second session will cover Changes in Chapter 7 through 8 of the 2020 NEC. The instruction will include the proper use and limitations for material and equipment used for electrical installations and the requirements for compliance with the NEC.

The instructor will also emphasize the importance of the changes.

- Chapter 7. Special Conditions.
- Articles 700-701-702-725-760
- Chapter 8. Communications Systems.
- Article 800

The presentation will be in Power Point format. Contractors and ESIs will benefit as well as Plans Examiners and Professional Designers by getting first-hand information on these changes. Both, the Ohio Building Code, and the Residential Code of Ohio, in chapters 27 and 33 respectively refers to 2017 NFPA 70 as the standard to comply with electrical installations.
Even though the State of Ohio has not adopted the 2020 NFPA 70 version, the purpose of this class is to update the attendees on the code changes and not on the enforcement.

INSTRUCTOR QUALIFICATIONS

Lorenzo M. Adam

Lorenzo started his electrical training in 1983. In 1988, he started his own electrical company. In 1996, he obtained the State Electrical Inspector certification. In 1997, he joined the City of Troy as a Building/Electrical Inspector. Currently, he works for the City of Mason. Lorenzo has an Electrical Plans Examiner, Residential Building Official, Building Inspector, Building Official interim certification from the State of Ohio. Lorenzo is currently the secretary/treasurer for the SW Division of IAEI, Ohio Chapter, secretary/treasurer for the Ohio Chapter IAEI and Treasurer and Past President of the Southwestern Ohio Building Officials Association (SWOBOA).

Address: 27 Penbrooke Ct., Monroe, Ohio 45050

Gaylord K. Poe

Gaylord Poe started his longstanding career in the electrical industry in 1969. He earned his Electrical Safety Inspector Certificate (\#592) in 1978. He continued to work as an electrician until 1983 when he joined the IBI team as a commercial/industrial field inspector. He was promoted to Commercial Coordinator in 1986, to Assistant Chief Electrical Inspector in 1994, and to Chief Electrical Inspector and President in 2000. He earned his Ohio Electrical Plan Examiner and IAEI Electrical Inspector-Plan Review certificates in 2005. He is the only Ohio ESI certified by the IAEI as a Master Electrical Inspector (2009). Gaylord is a member of the ULElectrical Council, the NFPA, the Cincinnati Business Development and Permit Center Advisory Committee, the Board of Trustees for the GCEA, the Electrical Trades Advisory Committee for Scarlet Oaks JVS, and is actively involved in course development and training classes for the continuing education programs of the IAEI, IEC, GCEA, and NECA. Gaylord has been involved with the IAEI since the early 1980's. He currentiy has become the PastPresident of the IAEI SW Division, in which he served for 17 years combine.

Address: Suite 125-W, 250 West Court Street, Cincinnati, OH 45202

Caty Robinson

Caty Robinson began her electrical career working as an apprentice in the Dayton, Ohio area. As a member of IBEW Local 82 Caty served a full apprenticeship and worked in the field as a journeyman wireman for Kastle Electric. Caty's Ohio certification \#2647 is for ESI (2004) and EPE (2013). Caty joined Inspection Bureau, Inc. (IBI) in 2008 as a commercial Electrical Safety Inspector. Caty currently serves as IBI's Commercial Coordinator and inspects in IBI's commercial territories and Kentucky. Caty is also a member of the IAEI Ohio Chapter SW Division

Address: Suite 125-W, 250 West Court Street, Cincinnati, OH 45202

Peter M. Baldauf

Peter has been in the electrical industry for over 15 years. He began his electrical career working through a trade school in Dayton, Ohio. After graduation, he enrolled in the Associated Builders and Contractors State certified electrical apprenticeship program. Peter attended the program for the full four years and upon completion of the program, he relocated to Tacoma, Washington. In Tacoma, he sat for a State administered test and received State of Washington certification as a journeyman electrician, which is required by the Division of Labor and Industry in that State to perform work as an electrician. Upon his return to the State of Ohio, Peter sat for and was issued a license by the State of Ohio to perform duties associated with the installation and servicing of fire alarm systems. He also applied and sat for the test to become a State Certified Electrical Safety Inspector. He was awarded this Certification in September of 1998. Peter began his career in public service with Montgomery County Building Regulations as an Electrical inspector in August of 1999. He is currently employed with the City of Vandalia as an Electrical Inspector. Peter also instructs classes for the Master Electrical Contractors Association, Adequate Wiring Committee, and International Association of Electrical Inspectors. He also has certification through the City of Dayton Board of Education as an Adult Education Instructor.

Address: 3600 Shroyer Road, Kettering, OH 45429

Daniel Dewayne Jenkins

Dewayne started his career in the electrical field in 1982 in Dayton, Ohio and several years of experience in the electrical industry both as a contractor and inspector. He served 4 years in an electrical apprenticeship program and has over 8 years in the field as a journeyman electrician and he has 4 years, to his credit, as an electrical estimator and project manager.

Dewayne has been a licensed electrical contractor and a certified electrical safety inspector since 1996. He also holds Ohio certifications as building inspector (1998), electrical plans examiner (2006) and residential building official (2007) and chief building official (2008). He is currently employed by the City of Kettering in the position as an electrical plans examiner, electrical safety inspector and building inspector.

Dewayne is an adjunct lecturer II for Sinclair Community College in the electrical trades for several years. A technical presenter for the Ohio Board of Building Standards (OBBS), International Association of Electrical Inspectors (IAEI), Master Electrical Contractors Association (MECA), Adequate Wiring Committee (AWC) \& Greater Cincinnati Electrical Association (GCEA). He has served as President for the Ohio Chapter IAEI (2010). Dewayne has also served as President of the Miami Valley Building Officials Council (2002 \& 2003). He currently is the President of the Southwest Division, IAEI and serves on the Electrical Safety Inspector Advisory Committee for the Ohio Board of Building Standards.

Address: 3600 Shroyer Road, Kettering, OH 45429

Analysis of Changes - 2020 NEC

Article 100 Part III Hazardous (Classified) Locations (CMP-14)
 definitions will be moved to new Part III of Article 100 for added clarity and usability

Article 100 Definitions: Grounded Conductor (I-Note)

Grounded Conductor A system or circuit conductor that is intentionally grounded. (CMP-5)

110.22(A) Identification of Disconnecting Means

Service equipment Distribution equipment

Each disconnecting means shall be legibly marked to indicate its purpose unless located and arranged so the purpose is evident
In other than one- or two-family dwellings, the marking shall include the identification of the circuit source that supplies the disconnecting m

52
The marking shall be of sufficient durability t

Where equipment rated 800 amperes or more that contains overcurrent devices, switching devices, or control devices is installed and there is a personnel door(s) intended for entrance to and egress from the working space less than $7.6 \mathrm{~m}(25 \mathrm{ft})$ from the nearest edge of the working space, the door(s) shall open in the direction of egress and be equipped with listed panic hardware or listed fire exit hardware.

210.8 Measurements for GFCI Protection

 distance from a receptacle is required to be measured as the shortest path the supply cord of an appliance connected to the receptacle would follow without piercing a floor, wall, ceiling, or fixed barrier, or the shortest path without passing through a dof, coorway, of window [210.8]

64

Table 220.12 General Lighting Loads by Non-Dwelling Occupancy (Part 1)

	Unit Load	
Type of Occupancy	Volt-amperes/m ${ }^{\text {2 }}$	Volt-amperes/ft ${ }^{2}$
Automotive fa	16	1.5
Convention Center	15	1.4
Courthouse (was 8	15 z2	1.42 .0
Dormitory	16	1.5
Exercise center	15	1.4
Fire station	14	1.3
Gymnasium ${ }^{\text {a }}$ (was Armories and auditoriums)	1811	1.71 .0
Health care clinic (was Hospitals)	1722	1.62 .0
Hospital	17	1.6
Hotels and motels, including apartment houses		
without provisions for cooking by tenants ${ }^{\text {b }}$	1822	1.72 .0
Library	16	1.5
Manufacturing facility ${ }^{\text {c (was Industrial commercial (loft) bldg) }}$	2422	2.27 .0
Motion picture theater	17	1.6
Museum	17	1.6
Office ${ }^{\text {d }}$ (was Office buildings)	1439	1.33 .5

Table 220.12 General Lighting Loads by Non-Dwelling Occupancy (Part 2)

Type of Occupancy
Parking garage ${ }^{\mathrm{e}}$ [was Garages-commercial (storage)]
Penitentiary
Performing arts theater
Police station
Post office
Religious facility (was Churches)
Restaurant ${ }^{\mathbf{f}}$ (was Restaurants and Clubs)
Retail ${ }^{\text {g, }}$ (was Barber shops and beauty parlors and Stores)
School/university (was Schools)
Sports arena
Town hall
Copyright ${ }^{\circ}$ IAEI 2020
Transportation
Warehouse
Workshop

Unit Load
Volt-amperes/m ${ }^{2} \quad$ Volt-amperes $/ \mathrm{ft}^{2}$
$36 \quad 0.30 .5$
13 1.2
$16 \quad 1.5$
14
17
2411
16 z2
2033
33
33
15
13
13 3
1.3
1.6
2.21 .0
1.52 .0
1.93 .0
3.0
3.0
1.4
1.20 .25
1.7

Article 242 Overvoltage Protection

New Article 242 added to provide the general, installation, and connection requirements for overvoltage protection and overvoltage protective devices

Relocates previous Articles 280 and 285 into a new Article 242

250.64(A) Aluminum or Copper-Clad Aluminum GECs

Grounding electrode conductors (GEC) of bare, covered, or insulated aluminum or copper-clad aluminum shall comply with the following:
(1) Bare or covered GECs not permitted to be installed where subject to corrosive conditions or be installed in direct contact with concrete (without an extruded polymeric covering)
(2) Terminations made within outdoor enclosures that are listed and identified for the environment are permitted within 450 mm (18 in.) of bottom of the enclosure
(3) Aluminum or copper-clad aluminum GECs installed external to buildings or equipment enclosures not permitted to be terminated within 450 mm (18 in.) of the earth

300.4(G) Protection Against Physical Damage - Insulated Fittings

Where raceways contain 4 AWG or larger insulated circuit conductors, and conductors enter a cabinet, a box, an enclosure, or a raceway, conductors shall be protected by any of the following:

334.2 Nonmetallic-Sheathed Cable - Type NMS Deleted

All references to Type NMS cable has been deleted from Article 334 as this cable construction is no longer manufactured

374.6 Listing Requirements for Cellular Metal Floor Raceways

A new 374.6 was added to Article 374 requiring all cellular metal floor raceways to be listed

404.9 General-Use Snap Switches, Dimmers, and Control Switches

Faceplates provided for snap switches, dimmers, and control switches mounted in boxes and other enclosures required to be instatled so as to completely cover the opening and, where the switch is flush mounted, seat against the finished surface
Metal faceplates are required to be bonded to an equipment grounding conductor (EGC) Listed kits or listed assemblies are not required to be connected to an EGC if (4) conditions are met, including if the device is provided with a nonmetallic faceplate and the device is designed such that no metallic faceplate replaces the one provided

Snap Switches

Dimmers

Control Switches

430.122(D) Several Motors or Motor(s) and Other Load(s)-Adjustable-Speed Drive Systems With Power Conversion Equipment

Conductors supplying several motors or motor(s) and other load(s), including power conversion equipment, required to have calculated ampacity in accordance with 430.24, using the rated input current of the power conversion equipment

Output conductors between power conversion equipment and the motor must have an ampacity equal to or larger than 125 percent of the motor full-load current (w/ exception) [430.122(B)]

An outdoor emergency generator shutdown device is required for generators installed at oneand two-family dwelling units (other than cord-and-plug-connected generators)

517.17(D) Performance Testing of GFP Systems at Health Care Facilities

When ground-fault protection of equipment is first installed, each level required to be performance tested to ensure compliance with 517.17(C) (selectively coordinated)

32

517.26 Application of Other Articles (Health Care Facilities)

Life safety branch of the essential electrical system shall meet the requirements of Article 700, except as amended by Articl

Branch circuits that supply emergency lighting shall be installed to provide service from a source complying with 700.12 when normal supply for lighting is interrupted or where single circuits supply luminaires containing secondary batteries (amended from 700.17)

518.6 Outdoor Illumination - Assembly Occupancies

Illumination required for working spaces about fixed service equipment, switchboards, switchgear, panelboards, or motor control centers installed outdoors that serve assembly occupancies

41

525.20(G) Protection of Flexible Cords or Cables

Flexible cords or cables accessible to the public shall be arranged to minimize tripping hazards

Flexible cords or cables permitted to be covered with nonconductive matting secured to the walkway surface or protected with another approved cable protection method
The matting or other protection method cannot constitute a greater tripping hazard than the uncovered cables

550.32(E) Supply Receptacles for Mobile or Manufactured Homes

Receptacles located outside mobile or manufactured homes required to be provided with GFCl protection as specified by 210.8(A)

555.35(B) Leakage Current Measurement Device at Marinas, Etc.

Where more than three receptacles supply shore power to boats, a leakage current measurement device shall be available and be used to determine leakage current from each boat that will utilize shore power

Leakage current measurement will provide the capability to determine when an individual boat has defective wiring or other problems contributing to hazardous voltage and current

The use of a test device will allow the facility operator to identify a boat that is creating problems

The use of a test device will also help the facility operator prevent a particular boat from contributing to hazardous voltage and current in the marina area
600.4(D) Visibility of Markings - Electric Signs and Outline Lighting

Signs and outline lighting systems required to be marked with such things as manufacturer's name, trademark, input voltage and current rating, maximum allowable lamp wattage per lampholder, and other means of identification [600.4(A) and (C)]

Markings and listing labels are required to be visible after installation and must be permanently applied in a location visible prior to servicing
Marking permitted to be installed in a location

91

600.35 Retrofit Kits

New 600.35 gives specific installationinstructions for retrofit kits for signs and outline lighting systems

General-use or sign-specific retrofit kits for sign or outline lighting systems to include installation instructions and requirements for field conversion of a host sign
Retrofit kits shall be listed and labeled
All parts that are not replaced by a retrofit kit shall be inspected for damage

620.65 Signage for Selective Coordination

(Elevators, Dumbwaiters, Escalators, Moving Walks, Platform Lifts, and Stairway Chairlifts)
Equipment enclosures containing selectively coordinated overcurrent devices required to be legibly marked in the field to indicate that the overcurrent devices are selectively coordinated

Article 625 - Part II EV Equipment Construction

All product construction requirements in Part II of Article 625 addressing product features that are an integral part of the listing requirements for EV product were removed from Article 625

680.9(A) Overhead Power Conductor Clearances

The minimum clearances for oyerhead power conductors (not just service conductors) from pools, fountains, etc. shall comply with the provisions in Table 680.9(A) for conductors operating at 0 to 750 volts to ground [6.9 m (22.5 ft)] (typical)

680.26(B)(2)(c) Copper Grid for Perimeter Surfaces

Where structural reinforcing steel is not available or encapsulated, an 8 AWG copper grid system is permitted to be utilized arranged in a $300-\mathrm{mm}$ (12-in.) by $300-\mathrm{mm}$ (12-in.) network of conductors in a uniformly spaced perpendicular grid pattern with a tolerance of 100 mm (4 in.)
Required to be secured within or under the deck or unpaved surfaces between 100 mm to 150 mm (4 in. to 6 in.) below the subgrade

A single 8 AWG solid copper conductor or structural reinforcing steel (rebar or wire mesh) in the concrete is also permitted as the bonding grid for the perimeter surface

690.4(B) PV Equipment Listing and Evaluation

Equipment intended for use in PV systems required to be listed or be evaluated for the application and have a field label applies

690.31 Wiring Methods for Solar Photovoltaic (PV) Systems

690.31 was revised and re-organized for clarity and to bring PV wiring methods for PV source and output circuits to one location

692.4(B) Identification of Power Sources (Fuel Cell Systems)

Three separate List Items where created to clearly identify the requirements for different fuel cell system types to add clarity to the placarding of these systems

695.3(C)(3) Selective Coordination (Fire Pumps)

Fire pumps in multibuilding campus-style complexes require all overcurrent protective device(s) to be selectively coordinated with all supply-side overcurrent protective device(s)

710.15 General Requirements for Stand-Alone Systems

New provisions added to 710.15 to recognize that stand-alone systems can deliver power to three-phase applications as well as single-phase systems

710.15(D): Three-phase Supply. Stand-alone and microgrid systems are permitted to supply three-phase, 3-wire or 4-wire systems

840.94 and 840.102 Premises Circuits Leaving the Building

840.94: Requires circuits leaving a building to power equipment remote to that building or outside the exterior zone of protection defined by a 46 m (150 ft) radius rolling sphere, to comply with 805.90 (Protective Devices) and 805.93 (Grounding, Bonding, or Interruption of Non-CurrentCarrying Metallic Sheath Members of Communications Cables)

Overhead premises-powered broadband communication system circuit leaving building to power equipment in second building

If coaxial cables are present, required to comply with 820.100 (Cable Bonding and Grounding) (which references 800.100) and 800
840.102: Requires communications wires and cables circuits leaving the building to power equipment remote to the building or outside the exterior zone of protection defined by a 46 m (150 ft) radius rolling sphere to comply with 800.100 (Cable and Primary Protector Bonding and Grounding) and 800.106 (Primary Protector Grounding and Bonding at Mobile Homes)

File Attachments for Item:

ER-6 Electrical Safety Webinar Based on 2020 NEC and NFPA 70E (Matthews Electrical Services)

BO, MPE, EPE, MechPE, ESI, BI, MI, RBO, RPE, RBI, RMI, RIUI (4 hours)
Staff Notes: Add NRIUI, recommend approval.
ESIAC Recommendation:
Committee Recommendation:

APPLICATION

FOR
Continuing Education Course Approval

Continuing education programs approved for education credit by the Ohio Board of Building Standards may be used for compliance with certification requirements related to code enforcement, plan review, and inspection responsibilities. The credit is to be used to renew the certifications issued by the Ohio Board of Building Standards pursuant to section 3781.10 (E) ORC.

Board of Building Standards
6606 Tussing Road, P.O. Box 4009 Reynoldsburg, Ohio 43068-9009
(614) 644-2613 Fax: (614) 644-3147 dic.bbs@com.state.oh.us
www.com.state.oh.us/dic/dicbbs.htm
City: Fostoria $\quad{ }^{\text {Inchulde Roon }}$

State: Ohio
Zip: 44830
E-Mail: hpmatthews@mathewselectrical.net
Telephone: 419-575-3488 Fax:

Course Sponsor:

COURSE INFORMATION:

Course Title: Electrical Safety Based on the NEC and NFPA 70E		
New Course Submittal: \square Update Course: \square Prior Approval Number:		
Purpose and Objective: The objective of this course is to cover some of the major electrical safety sections in the NEC including working space, clearances, labeling, listing, marking, GFCI requirements and others. This course will also cover the main points of NFPA $70 E$, its		
connection to the NEC, NFPA 70B and OSHA. It will also cover important concepts including establishing an electrically safe work condition,		
performing risk assessments and hazard analysis, interpreting arc flash warning labels, covering the roles of the qualified and unqualifie		
persons, wearing the appropriate PPE and many other topics. This course will also discuss the main electrical hazards of shock and are flash.		
Number of Instructional Contact Hours that can be obtained upon completion: If Multi-Session, Number of Instructional Contact Hours Per Session:		
Program Applicable for the Following Participants:		
Res Building Official \square Res Plans Examiner \square		
Electrical Safery InspectorsLocation of ESI Course: www.mathewselectricalservices.net Date(s) of ESI Course(s): September 10, 2022		

| SUBMITTAL CHECKLIST: | Make Sure all of the Following Information is Submitted: | Check
 Off |
| :--- | :--- | :---: | :---: |
| Course Submitter: | Name of contact person and their certification numbers, organization, address, fax, phone | x |
| Course Sponsor: | Organization sponsoring or requesting the program (if any) | |
| Course Title: | Name of course (related to content) | x |
| Purpose/Objective: | Describe purpose and how course will improve competency of certification(s) listed | x |
| Contact Hours: | Indicate instructional time and credit requested in hours (e.g. 0,5 hr, I hr, 3.5 hrs) | x |
| Participants: | Check off each certification for which credit is requested (for which course relates to certification) | x |
| Content of Program: | Include collated agenda, time schedule, course outline; list specific sections of code, references, and topics covered | x |
| Course Materials: | Collated workbooks, handouts, hard copy or electronic versions of program is available | x |
| Instructor(s) Info.: | Resume of professional/educational qualifications \& teaching/training experience/BBS certifications | x |
| Test Materials: | Copy of quizzes or tests to be given | x |
| Completed Application: | | x |

NFPA 70E and the NEC

The National Electric Code aka NEC (NFPA 70) is intended to instruct us how to install electrical systems and equipment safely. It is a minimum standard and the goal is to protect people and equipment.

NFPA 70E Electrical Safety Standard in the Workplace works with the NEC and the main focus is to protect the people who install the electrical systems and equipment.

These very important standards work hand-in-hand, but there are some important distinctions that you must be aware of. There are also some concepts that may be confusing to some.

In this session, we will focus on NFPA 70E but highlight and discuss the areas where it interacts with the NEC. Select references from OSHA 1910 Subpart S (Industry Electrical), OSHA 1926 Subpart K (Construction Electrical) and 1926 Subpart V (Electric Power, Transmission and Distribution) will also be covered.

The scope of the NEC will be compared with the scope of the National Electric Safety Code (NESC - IEEE C2) to make the distinction between residential/commercial/industrial installations and utility company requirements.

Some of the topics that will be covered will be:

NEC

- Arc Flash Warning Label
- Marking Requirements
- Identification of Disconnecting Means
- Spaces about electrical equipment
- working space
- clear space
- dedicated equipment space
- Guarding of live parts
- Guarding of equipment and working space
- Assured Equipment Grounding Conductor (OSHA requirement)

NFPA 70E

- Electrical Safety definitions
- Qualified vs. Unqualified: What does it mean? Who's qualified? Who's unqualified?
- The Arc Flash Label: The difference between the NEC version and the NFPA 70E version
- Shock Boundaries: Restricted, Limited
- Arc Flash Boundaries
- Working distance
- How incident energy is calculated.
- The definition of $\mathrm{cal} / \mathrm{cm}^{2}$
- How PPE (Personal Protective Equipment) levels are determined
- How the arc flash and shock protection boundaries are established
- NFPA 70E tables vs calculations: Which one should I use? When?
- Normal Operations: What is this and how is it used?
- Establishing and Electrically Safe Working Condition
- How to mitigate arc flash severity
- Risk and Hazard assessment
- The role of communication
- When is an Electrical Energized Work Permit required? What are the exceptions?
- First Aid and Emergency response. Who is required to be trained? What level of training is required
- Record Keeping and documentation
- GFCls and other protective devices
- Extension cord
- What is the Assured Equipment Grounding Conductor Program?
- When are two-people required to do work?
- How do I implement and Electrical Safety Program?
- PPE selection, use, testing and care requirements

At the end of this training, the attendee will have a better understanding of all electrical safety requirements in the NEC and NFPA 70E. The attendee will also understand the differences and similarities of related codes and standards.

Henry Peter Matthews, PE, CPE, CESCP, PVA

Home Address
1203 McKinley Place
Fostoria, Ohio 44830
Email: hpmatthews@matthewselectrical.net
Home Phone: 419-701-7707
Cell Phone: 419-575-3488

Work Address
Marathon Petroleum Company
539 South Main Street
Findlay, Ohio 45840
Email: hpmatthews@marathonpetroleum.com
Office phone: 419-421-3423
Cell phone: 419-957-2110

Work Experience

$$
\begin{array}{ll}
\text { Marathon Petroleum Company, LP; Findlay, Ohio } & \text { June } 2006 \text { - Present } \\
\text { - Advanced Senior Engineer/Electrical Specialist } & \\
\text { - Electrical Engineering Supervisor - Terminal Engineering } & \\
\text { - Project Engineer - Major Projects } & \\
\text { - Electrical Designer - Retail Division } &
\end{array}
$$

Cooper Standard Automotive, Bowling Green, Ohio
 July 1993 - June 2006

- Plant Engineering Manager
- Plant Electrical Engineer

Toledo Engineering Company (consultant); Toledo, Ohio
June 1989 - July 1993

- Electrical Drafter

Education

> Bowling Green State University; Bowling Green, Ohio

Aug 2003
Masters of Business Administration

PennsyIvania State University; University Park, PA
Dec 1989
BS Electrical Engineering
Solar Energy International, Paonia, Colorado
Sept 2021
Solar PV Training
Owens Community College; Findlay, Ohio
April 2017
Certificate: Introductory Welding
Penn Foster Career School
July 2010
Certificate: Plumbing

Penn Foster Career School

October 2004
Certificate: Electrician

Certifications	Professional Engineer (PE): OH, MI, IN, KY, IL, WI
	Photovoltaic Associate (PVA) by NABCEP
	Certified Electrical Safety Compliance Professional (CESCP), NFPA
	Certified Plant Engineer (CPE): Association for Facility Engineers
	Building Operator Certification (BOC): Northwest Energy Efficiency Council

Licenses Ohio Electrical Contractor, Ohio Department of Commerce, License \# 46972
 Ohio Training Agency, Ohio Construction Industry Licensing Board, Agency \#48714
 Ohio Training Agency, Ohio Board of Building Standards
 Special Training Solar Energy International (SEI), Paonia, Colorado
 - Solar Electric and Design and Installation Course, April 2021, 60 hours
 - PV Systems Fundamentals (Battery-Based), June 2021, 40 hours
 - Advanced PV System Design and the NEC, June-July 2021, 60 hours
 - Comparing Battery Technologies, July 2021, 10 hours
 - Tools and Techniques for Operations and Maintenance of PV Systems, 9/21, 40 HR

Affiliations

> Institute of Electrical and Electronics Engineers (IEEE) - Senior Member
> International Association of Electrical Inspectors (IAEI)
> NFPA Section Member for Architects, Engineers and Building Officials
> Illumination Engineering Society of North America (IESNA)
> API RP 545 former Co-Chair, American Petroleum Institute, Lightning Protection for Above Ground Storage Tanks (2017-2018)

Business
Ownership
Matthews Electrical Services, Owner
Designer Cuts Hair Salon, LLC; Co-owner

Biography

Henry has worked in the electrical, power, electronics, instrumentation, controls and communication fields for over 30 years. He earned his Bachelor of Science degree in Electrical Engineering from Penn State University in 1989. Henry worked as a consultant for Toledo Engineering Company in Toledo, Ohio as a drafter and field technician.

In 1993 he started working for Cooper Standard Automotive Company in Bowling Green, Ohio in 1993 as a Plant Electrical Engineer. He was then promoted to Plant Engineering Manager in 2000. During this time, he earned his Professional Engineering License in Ohio.

In 2003, Henry earned his MBA at Bowling Green State University.
In 2006, Henry joined Marathon Petroleum Company in Findlay, Ohio. He then went on to obtain his Professional Engineers license in Electrical Engineering for Michigan, Indiana, Illinois, West Virginia, Kentucky, Minnesota and Wisconsin. During his tenure at Marathon, Henry has had several roles including Electrical Design Engineer, Project Engineer and Electrical Supervisor. He is currently an Advanced Senior Engineer where he writes electrical standards for the company and conducts a community of practice for all the company's electrical engineers and safety professionals.

During his time at Cooper Standard Automotive and Marathon Petroleum, Henry developed a passion for teaching, learning and applying Electrical Construction Codes. At Cooper, he trained the entire non-electrical maintenance staff to perform basic electrical tasks.

At Marathon, Henry works with the Learning and Development Department to conduct multiple training sessions for new hires and seasoned engineers on various topics including Electrical Safety, Grounding and Bonding, Hazardous Area Location, Electrical Inspection, Motors, Lightning protection Static Electricity Mitigation, Reading and Understanding Electricał Diagrams, Programmable Logic Controllers and more.

Henry also works very closely with the Talent Acquisition Teams and visits numerous college campuses to deliver presentations on Engineering, Career Development, Networking and other topics.

Henry recently served as the Co-chair of the API Recommended Practice 545 Task Group for Lightning Mitigation for Above Ground Storage Tanks. In this role, he works with engineers, scientists and manufacturers from all over the world to evaluate the impacts of lightning and static electricity on metal above ground storage tanks.

His passion for teaching and Electrical Safety has motivated him to earn the Certified Electrical Safety Compliance Professional Certification (CESCP) from NFPA. He also regularly attends numerous electrical and safety conferences and training sessions conducted by NFPA, IEEE, API.

Previously, Henry was the President of the Fostoria, Ohio area Toastmasters team.

Henry is also a member of the International Association of Electrical Inspectors.
Henry also owns two small businesses:

Matthews Electrical Services - that performs mainly limited residential and small commercial electrical services and conducts training for licensed electricians in the state of Ohio.

Designer Cuts Hair Salon, LLC - Henry co-owns the beauty salon with his wife.

1

2

Objectives

- To provide basic information on electrical safety for all persons working on or around electrical equipment.
- This information is to protect the worker and bystanders near the location(s) where work is being performed.
- Provide information in simple terms to facilitate understanding and comprehension.

6

Disclaimer \#2

This safety training is not intended
to replace other forms of training
that may be required for your
company or customer's safety
requirements.

- OSHA 10, NFPA hour for example

However... it may satisfy NFPA 70E 110.2(A)(4)

- Type of training...shall be classroom, on-the-job, or a combination of the two. Type shall be determined by the owner.
- Check with your owner or person-in-charge

Disclaimer \#3

The views and opinions presented in this class are those of Matthews Electrical Services and not necessarily those of the various entities the presenter represents or has previously or currently works for.

The material used in this class is based on documented publicly-available information (NFPA, OSHA, IEEE etc.)

The interpretation of this material is based on the presenters experience and training of the subject matter.

Disclaimer \#4

This presentation uses video from various electrical equipment manufacturers. This is not intended to endorse any particular products, vendors or manufacturers.

The content is shown for educational purposes only.

Let's Begin!

The NEC "Suite"

Survey: Electrical Safety is a Broad Topic

What topics do you want to cover?

Why Do We Need Electrical Safety Training?

18

22

25

Why?!
ESFI Warns Against Participating in Outlet Challenge

.

ESFí.

Dangerous TikTok Challenge Sparks Warning
ESF is warning parents and children against the dangers of participating in the "outlet challenge. The challenge involves partially plugging in a cellphone charger into an outtet and then sliding a penny down the wall onto the exposed prongs. This challenge can have disastrous consequences
including fires, injuries, and electrocution. The students involved in the prank conducted in
Plymouth, Masssachusetts could be facing criminal charges.
https://www.necn.com/news/local/fire-officials-warn-parents-about-outlet challenge/2221457

https://www.esfi.org/resource/residential-construction-workplace-safety-751

Electrical Safety References

- National Electric Code (NEC, NFPA 70)
- Mainly concerned with safe installations for occupants and users
- NFPA 70E focuses on worker safety
- NFPA 70B focuses on electrical equipment maintenance
- OSHA 1910 focuses on contractors
- OSHA 1926 focuses on industry
- NESC (National Electrical Safety Code, IEEE-C2)
- focuses on utility installations
- IEEE 1584 Short Circuit calculations
- Recently revised in 2018

Introduction to Electrical Safety

DANGER

ELECTRICAL HAZARD

NEC Safety Highlights

Labeling requirements

Safe Working Spaces, Clearances

Working Space

- Adequate working space shall be allocated around electrical equipment to provide for maintenance and safe operation

	Minimum Clear Distance		
Nominal Voltage	Condition 1	Condition 2	Condition 3
$0-150$	3 ft	3 ft	3 ft
$151-600$	3 ft	$3 \mathrm{ft}-6 \mathrm{in}$.	4 ft
$601-1000$	3 ft	4 ft	5 ft

Note: not related to Shock tables in NFPA 70E
https://www.youtube.com/watch? $=$ =gEYuLI_USA

Labeling (hazard
communication)

- Frequent target of inspectors!
- 2nd leading OSHA citations
- New:
- Upstream source identifier
- SCCR (field labeling)
- Disconnect location
(signs)

A WARNING

Maximum Available Fault Current (MAFC): 23.2 kA X/R at the MAFC: 8

 Date: Dec 2013ARCAD INC. ph: 647 -693.7715 www.arcadvisor.com

```
60 n voits ne. 2400 VOLTS DC
24 VOITS TC. 120 VOLTS AC
```


CAUTION
KEEP ELECTRICAL PANEL CLEAR FOR 36 INCHES

Arc Flash Labels!

- Two Types
- NEC version [110.16]: "generic label" (mandatory)
- NFPA 70E version [130.5(H)]
- NEC version Required for:
- Switchgear, switchboards,
- Panelboards, meter sockets,
- MCCs that require servicing,
- Maintenance, adjustments, examination etc.
- Exception: dwelling units

Arc Flash Labels (more on this later)

- NFPA 70E version

Required if 70E adopted by facility

- Required for:
- Switchgear, switchboards
- Panelboards, meter sockets,
- MCCs that require servicing,
- Maintenance, adjustments, examination etc.

- Exception: dwelling units
- NEC version Required for:
- Service equipment, rated 1200 amps or more
- Contain nominal system voltage

Available fault curren

- Clearing time of overcurrent device
- Date that label was affixed
- NFPA arc Flash label can be substituted for this
- Ties this to NFPA 70E tables for PPE selection

Electrical Hazards

SHOCK
 ARCFLASH

[^0]

Body Resistance Chart
 Paths Electricity Can Take Through Body

The lower the resistance, the more current flows

Body Part	Resistance (ohms)
Dry, intact skin (no cuts or scabs)	$100,000-600,000$
Wet skin	1000
Within the body	400
Ear to ear	100

- Differences in men and women
- Salty and sweaty skin lowers resistance
$\mathrm{V}=\mathrm{I} x \mathrm{R}$
$\mathrm{I}=\mathrm{V} / \mathrm{R}$

Current vs Impact on the Human Body

Current in miliamps (ma)	Probable Effect on the Human Body
$1 \mathrm{ma}(.001 \mathrm{amp})$	Perception level. Slight tingling sensation. Still dangerous under certain conditions.
$5 \mathrm{ma}(.005 \mathrm{amp})$	Slight shock felt; not painful but disturbing. Avergage individual can let go. However, strong involuntary reactions to shocks in this range may lead to injuries.
$6 \mathrm{ma}-16 \mathrm{ma}(.006-.016)$ amps	Painful shock, begin to lose muscular control. Commonly referred to as the freezing current or "let-go" range.
$17 \mathrm{ma}-99 \mathrm{ma}(0.017-.099)$ amps	Extreme Pain, respiratory arrest, severe muscular contractions. Individual cannot let go. Death is possible.
$100 \mathrm{ma}-2000 \mathrm{ma}(.1-2 \mathrm{amps})$	Ventricular fibrillation (uneven, uncoordinated pumping of the heart.) Muscular contraction and nerve damage begins to occur. Death is likely.
greater than $2000 \mathrm{ma} \mathrm{(2amps)}$	Cardiac arrest, internal organ damage, and severe burns. Death is probable

Note: GFCIs are set just below the "let-go" range (6ma)

46

49

GFCI Requirements
https://www.esfi.org/resource/gfci-virtual-demonstration-481

 GFCI PROTECTED HOMES ELECTROCUTIONS

www.efsi.org

Dwelling Unit GFCI requirements	Article 210.8(A)
Bathrooms	$210.8(\mathrm{~A})(1)$
Garages and Accessory Buildings	$210.8(\mathrm{~A})(2)$
Outdoors	$210.8(\mathrm{~A})(3)$
Crawl Spaces	$210.8(\mathrm{~A})(4)$
Basements (finished and unfinished)	$210.8(\mathrm{~A})(5)$
Kitchens	$210.8(\mathrm{~A})(6)$
Sinks	$210.8(\mathrm{~A})(7)$
Boathouses	$210.8(\mathrm{~A})(8)$
Bathtubs and shower stalls	$210.8(\mathrm{~A})(9)$
Laundry Areas	$210.8(\mathrm{~A})(10)$
Indoor Damp and Wet Locations (new)	$210.8(\mathrm{~A})(11)$
Boast Hoist	555.9

53

GFCI Requirements for Other Than Dwelling Units	Article 210.8(B)
Bathrooms	$210.8(\mathrm{~B})(1)$
Kitchens or areas with sink and permanent provisions for food preparation or cooking	$210.8(\mathrm{~B})(2)$
Rooftops	$210.8(\mathrm{~B})(3)$
Outdoors	$210.8(\mathrm{~B})(4)$
Sinks	$210.8(\mathrm{~B})(5)$
Indoor damp and wet locations	$210.8(\mathrm{~B})(6)$
Locker rooms with shower facilities	$210.8(\mathrm{~B})(7)$
Garages and accessory buildings	$210.8(\mathrm{~B})(8)$
Crawl Spaces - at or below grade	$210.8(\mathrm{~B})(9)$
Unfinished areas of basements	$210.8(\mathrm{~B})(10)$
Laundry areas	$210.8(\mathrm{~B})(11)$
Bathtubs and Shower Stalls	$210.8(\mathrm{~B})(12)$

55

Cases That Drove Change

57

Chapter 5 GFCI Requirements

Requirement		Article
Commercial Garages		511.12
Agricultural Buildings	\triangle	$547.5(\mathrm{G})$
Mobile Homes, Manufactured Homes, Mobile Homes	\triangle	$550.13(\mathrm{~B})$

67
7

230.85 Exterior Emergency Disconnects for Dwelling Units

- Type of change: New
- 2020 NEC:
- An emergency disconnect is now required at an exterior readily accessible location for
dwelling units.
- Note: it can include the service disconnecting means.
- Special Marking required: EMERGENCY DISCONNECT, SERVICE DISCONNECT e.g.
- Reason: Safety
- Enhances the safety for first responders
- With alternative sources of power available (PV, generators, batteries, UPS, wind turbines etc.), first responders often find it difficult to find reliable way to kill power in emergencies
- Three Options...

406.12 Tamper-Resistant Receptacle

Common areas of multifamily dwelling units and hotels and motels are included as well.

```
:\%: Assisted living facilities was also added.
```


Tamper Resistant Receptacles	Reference
Dwelling units including	$406.12(1)$
Attached and detached garages and accessory buildings to dwelling units	$406.12(1)$
Common areas of multifamily dwellings	$406.12(1)$
Guest rooms and guest suites of hotels, motels, and their common area	$406.12(2)$
Child care facilities	$406.12(3)$
Preschools and Education facilities	$406.12(4)$
Business office, corridors, waiting rooms and the like in clinics, medical and dental offices, and outpatient facilities	$406.12(5)$
Subset of assemblies occupancies described in 518.2 to include places of awaiting transportation, gyms, skating rinks and auditoriums	$406.12(6)$
Dormitory Units	$406.12(7)$
Assisted Living Facilities	$406.12(8)$

73

555.35 GFPE and GFCI Protection at Marinas, Boatyards, Etc.

Shore power receptacles shall have individual GFPE not exceeding 30 milliamperes [$555.35(\mathrm{~A})(1)$] All 125 -volt, single-phase, 15 - and 20 -ampere receptacles (other than shore power) shall be provided with Class A GFCl protection [555.35(A)(2)]

[^1] permitted at the feeder overcurrent protective device [555.35(A)(3)]

Electric Shock Drowning

https://www.youtube.com/watch?time_continue= $=1 \& \mathrm{v}=\mathrm{Cwj} 41 \mathrm{~S}$ MfH68\&feature=emb logo
https://www.boatus.com/seaworthy/esd.asp

74

Chapter 6 GFCI Requirements

Requirement

Reference

Requirement		Reference
Elevator Pits, Hoistways, Dumbwaiters etc.	\triangle	620.6
Electric Vehicle Charging Equipment	\triangle	625.54
Storable and Portable Immersion Pools		680.35
Permanently Installed Immersion Pools		680.45
Fountains including Splash Pads	\triangle	680.50
Pool motors	\triangle	$680.21(C)$
Pool pump motor replacements		$680.21(\mathrm{D})$
Pool equipment room		$680.22(\mathrm{~A})(5)$
Permanently Installed Non-submersible pumps		680.59
Natural and Artificially Made Bodies of Water		682.15

FORINORMATONLLPURPOSESONYYNOTCURRENTCODED

Arc Fault Circuit Interrupter
https://www.youtube.com/watch?v=C-SBly_2bPQ

77

NFPA Faces of Fire: https://www.nfpa.org/Public-Education/Fire-causes-and-risks/Top-fire-causes/Electrical/Faces-of-Fire
http://www.e-hazard.com/arc-flash-resources/videos/

DO NOT TOUCH! NOT ONLY WILL THIS KILL YOU. it WILL HURT THE WHOLE time you are dying.

NFPA 70E Electrical Safety in the Workplace

78

NFPA 70E Highlights

- Definitions
- Hierarchy of Risk Controls
- Safe Work Practices
- Qualified vs Unqualified Persons
- Establishing an Electrically Safe Work Condition
- PPE selection (Table vs Incident Energy Method)
- Lockout Tagout and Energy Isolation
- Shock and Arc Flash Protection Boundaries
- "Normal Operating Conditions" (controversial)
- Energized Work and Energized Work Permit
- Communication
- Emergency Procedures
- Training and documentation to prove it

Electricity Safety Basics

- Electrical current wants to go back to its source!
- Not necessarily ground
- It may use the ground to get back to the source
- It will take any and all available paths to get back to the source - including people
- Most of the current will travel on the "path of least resistance (impedance)
- Provides safe shortcut for current to return to source

50 Volts

TRIVIA: WHY 50 VOLTS?

Key Factors in Electrical Safety

- Speed (of circuit breaker, fuse, relay, overload etc.)
- Distance (from hazardous energy)
- Amount of energy (from faults - short circuit, ground fault)

[^2]
Incident Energy (Calories/cm2)

- Measure of energy
- $1.2 \mathrm{cal} / \mathrm{cm}_{2}=$ equals onset of just curable 2 nd degree burn (blister)

Circuit Breaker
Time Coordination Curve

- Fastest circuit breaker takes 3 or 4 cycles to react
- Fuses are typically faster
- Solid state relays are fastest
- Condition of circuit breaker a facto
- The higher the current, the faster a breaker will operate
- The faster a breaker operates, the lower the amount of dangerous energy that gets through

86

Examples

- Elimination - Turn it off!
- Substitution - 24 VDC for 120 VDC
- Engineering Controls - arc resistant gear, coordination
- Awareness - training, labels
- Administrative Controls - standards, policies, codes
- PPE - last line of defense

Purpose

- provide a practical safe working environment for workers and observers from the hazards of electricity

Scope

- Industrial, Commercial, Government etc.
- Practices recommended for residential, but not mentioned specifically in NFPA 70E
- Not covered: utilities outside of buildings, marine, communications industry

92

94

The OSHA Connection

- OSHA is the "Shall"
- NFPA 70E is the "How"

OSHA
and Health Administration

97

1.2 Calorie/cm2

- Threshold for just-curable second degree burn https://tyndaleusa.com/fr-safety-resources/arc-flash-video-recap-2019/

> Definitions

LimitedApproach

Boundary

- approach limit at a distance from an exposed energized conductor or circuit within which a shock hazard exists.

101
Definitions

RestrictedApproach
Boundary

- An approach limit at a distance from an exposed energized conductor where there is an increased likelihood of electric shock, due to electrical arc-over associated with inadvertent movement.

Definitions

De-energized

Free from any electrical connection to a source of voltage and from electrical charge

Arc Flash Labels!

- NFPA 70E version
- Required for:
- Switchgear, switchboards,
- Panelboards, meter sockets,
- MCCs that require servicing,
- Maintenance, adjustments etc.
- Exception: dwelling units
- Must contain:
- Nominal system voltage
- Arc flash boundary
- And at least one of the following:
- Available incident energy and working distance or arc flash PPE category (not both)
- Minimum arc rating of clothing
- Site specific level of PPE

106

109

The Qualified Person

- Important!
- A person may be considered Qualified with regard to certain equipment or tasks, but be Unqualified as to other equipment or tasks due to lack of training or experience

$\underline{\text { https://www.esfi.org/resource/workplace-safety-the-importance-of-qualified-electrical-workers-670 }}$

RESPONSIBILTIES

- Job safety planning
- Lockout/tagout program audit
- Knows construction and operation of equipment
- Identify electrical hazards
- Familiar with PPE
- Familiar with precautionary techniques
- Familiar with electrical safety policies and procedures
- Knowledgeable of insulating and shielding materials
- Knowledgeable of insulated tools and test equipment
- Allowed in the limited and restricted approach boundaries with proper PPE

RESPONSIBILITIES

- Has skills to:
- Identify exposed energized part
- Determine nominal voltage of energized electrical conductors
- Know the approach distances
- Assess risks
- Select the appropriate risk control method (pyramid)
- Testing, troubleshooting,voltage measuring
- And many more..
- The Qualified Person:
- Verify proper equipment that will be isolated - especially for look-a-like equipment
- Open disconnect(s) to affected equipment
- Tests to verify that no voltage exists before work begins
- Tests voltage detector on known voltage source prior to test
- Puts on PPE per arc flash label to conduct tests
- Conducts test
- Checks meter on known voltage source again
(VERIFY-TEST- VERIFY)
- Locks Out/Tags Out equipment*
- Gives okay to perform work
- *Note: during this process, a start command shall be given to tirake sure equipment DOES NOT START

Definitions

116

117

118

Equipment Labeling

- Equipment requiring examination, servicing, adjustment or maintenance while energized shall be marked with a label
- Label shall have:

1. Nominal system voltage
2. Arc flash boundary
3. At least one of the following:

- Incident energy and corresponding working distanc
- Minimum arc rating of clothing
- Site-specific PPE

Communication: Job Briefing

- The employee in charge shall conduct a job briefing before starting each job that covers
- Important issues from the risk assessment process

And, addresses issues and concerns from:

- Special precautions
- PPE requirements
- Existing conditions
- Job site analysis
- What if analysis
- Emergency response and communication

Not Understanding the Hazards!

- What Can Go Wrong?
- Shock
- Burns
- Temporary blindness
- Temporary hearing loss
- Smoke inhalation
- Knocked back from blast
into another hazard
- Knocked off of ladder
- Loss of lighting - stumble
into another hazard
- Loss of power to potential
- critical ops
- Confusion
- Disorientation
- Death!

Emergency Response

- Contact release
- First Aid, Emergency Response and Resuscitation
- Includes CPR and AED use
- Training
- Verification of Training
- Documentation
- OSHA 2- Person Rule

Establishing an Electrically Safe Work Condition

Lockout/Tagout Program

- Beware of identical equipment
- chance of locking out wrong equipment

Arc Flash and Incident Energy Reduction Methods

- Arc-resistant switchgear: https://www.youtube.com/watch?v=yTQDgGEpNJQ
- Light Detection Relays: https://selinc.com/solutions/arc-flash-solutions/
- Maintenance Mode switches:
- make circuit breakers operate faster (instantaneous trip)
- Remote racking devices: https://www.youtube.com/watch?v=IburZAlAnN4
- Remote switch activation (Chicken Switches) \qquad
- Resistance grounding (high resistance grounding):
http://videos.eaton.com/experience/detail/videos/power-quality/video/5854799660001/high-resistance-groundingropautoStart=truc
- Zone selective interlocking (relaying schemes)

Exception 1

Exception 2: Can be used for applications $>1000 \mathrm{~V}$

Energized Work

- Energized work shall be permitted where the employer can demonstrate that de-energizing introduces additional hazards or increased risks
- Water treatment facilities, emergency life support systems, hazardous location ventilation e.g.
- Energized work allowed if it can be demonstrated that de-energization if infeasible due to equipment design or operational limitations
- Equipment operating at less than 50 V shall not be required to be deenergized....
- Use caution! Batteries for example
- Perform risk assessment

NORMALOPERATING CONDITIONS
 (NORMAL CONDITIONS)

- Source of much confusion, misinterpretation
- Leads to misapplication and increased risk
- Lots of debate on this topic
- Undergone several changes over years

Can I operate a circuit breaker or switch without PPE?
Will the enclosure door offer me some protection?
Arc Flash Video With Door Blowing Open (2:32)
https://brainfiller.com/videos/page/2/

Normal Operating Conditions (continued)

- Normal operation of electric equipment shall be permitted where a normal operating condition exists. A normal operating condition exists when all of the following conditions are satisfied:

1. The equipment is properly installed
2. The equipment is properly maintained
3. The equipment if used in accordance with instructions included in the listing and labeling and in accordance with manufacturer's instructions (new in 2018 version)
4. The equipment doors are closed and secured
5. All equipment covers are in place and secured
6. There is no evidence of impending failure

Energized Electrical Work Permit

- Exemptions
- Testing, troubleshooting, voltage measurements
- Thermography, ultrasound and other diagnostics
- General housekeeping
- PROPER PPE MUST STILL BE WORN!!
- https://www.e-hazard.com/blog/wp-content/uploads/2018/01/ENERGIZED-ELECTRICAL-WORK-PERMIT2015.pdf

Arc Flash PPE Selection

Incident Energy Method

- Calculated by:
- Software: ETAP, SKM, Easy Power
- Hand calculations: based on IEEE 1584 - See Annex D
- Impacted by:
- Circuit breaker or fuse clearing time
- Amount of short-circuit current available
- Condition of equipment
- User input (accuracy of one-line diagram) - Henry's input
- Shall be reviewed every 5 years

How to interpret the Information on the label

Circuit Breaker Resetting

- A circuit breaker should no longer be reset without investigation
- Repetitive opening and closing of breakers prohibited
- Qualified person should determine if ok to re-engergize
- Exception if the cause is an overload condition vs. a fault
- Note: repetitive closing into a fault will damage a breaker COULDBEDANGEROUS!

Note: Arc Flash labels come in many different configurations

Overhead Lines

- Refer to "movable conductors" in Shock distance tables
- Guidance also found in NEC, NESC
- Generally 10 ft . up to 50,000 volts
- OSHA table
$\frac{\text { https: } / / \text { www.youtube.com/watch? } \mathrm{v}=4 \mathrm{Q} \text { cctfnUeOM }}{\text { (ladders) }}$
$\frac{\text { https://www.youtube.com/watch?v=Y2MwX738e1 }}{\text { (cpanes }}$
29 CFR 1926.140
Table A
Voltage
Above 20.20 kV
Above $200-350 \mathrm{kV}$
Above $350-500 \mathrm{kV}$ Above $500-750 \mathrm{kV}$ Above 1000 kV (As established by the utility owner operator or registered professional engineer who is a qualified person with respect to electrical power trans mission and distribution)
figure 1. OSHA's minimum clearance distances.
ttps-//www.esfi.org/resource/workplace-safety-always-look-up-673

Diagnostics, Troubleshooting and Testing

- Exception* is permitted to allow diagnostics and testing on energized circuits
- Qualified person(s) must be involved
- Establish Limited Approach and Arc Flash boundaries
- Must wear proper PPE per the arc flash label OR Tables
- Barriers must be erected
- Select appropriately rated too

Proper voltage rating
Good condition

*Energized work permit is not required

Second Person Requirements
 (OSHA 1910.169)

- Some electrical work requires a second qualified person:
- To summon medical help in an emergency
- Knows how to safely release victims if shocked
- Knows CPR, First Aid and AED use
- May be required when:
- Working on or near power lines

- Working on transformers, regulators, capacitors
- Using mechanical lifts
- Other work that exposes employee to electrical hazards greater than normal operations
- DISCUSS THIS IN RISKASSESSMENTAND PRE-JOB!!!

Multi-meter Safety

- Proper ratings and certifications (UL and other NRTL) - Beware of the CE mark!
- Most meters are not intrinsically safe! - Hot work permit needed for use in hazardous areas
- Test leads condition
- Meter condition

- Proper connection of lead
- Safety - use proper PPE (gloves, glasses)
- Obey arc flash label for other PPE requirements
- Use good quality meters !

Overvoltage category	In brief	Examples
CAT IV	Three-phase at utility connection, any outdoor conductors	- Refers to the "origin of installation," i.e., where low-voltage connection is made to utility power - Electricity meters, primary overcurrent protection equipment - Outside and service entrance, service drop from pole to building, run between meter and panel - Overhead line to detached building, underground line to well pump
CAT III	Three-phase distribution, including singlephase commercial lighting	- Equipment in fixed installations, such as switchgear and polyphase motors - Bus and feeder in industrial plants - Feeders and short branch circuits, distribution panel devices - Lighting systems in larger buildings - Appliance outlets with short connections to service entrance
CAT II	Single-phase receptacle connected loads	- Appliance, portable tools, and other household and similar loads - Outlet and long branch circuits - Outlets at more than 10 meters (30 feet) from CAT III source - Outlets at more that 20 meters (60 feet) from CAT IV source
CAT I	Electronic	- Protected electronic equipment - Equipment connected to (source) circuits in which measures are taken to limit transient overvoltages to an appropriately low level - Any high-voltage, low-energy source derived from a highwinding resistance transformer, such as the high-voltage section of a copier

158

NFPA 70E Tables

WARNING

Arc Flash and Shock Hazard
Appropriate PPE Required

Note: outdated label- for demonstration purposes only

What is the Likelihood of an Arc Flash Event?

- What type of task(s) will you be working on?

Determining PPE Category

- What is the available fault current in kA ?
- How fast is the fuse or circuit breaker (clearing time)?

Select PPE

- Look up PPE Category on chart
- Select voltage rated gloves
- Hard hat
- Face shield
- Balaclava
- Foot wear
- Hearing protection
- Eye protection

169

Using the Incident Energy Analysis

- Use when an incident energy analysis has been done

AWARNING
Arc Flash and Shock Hazard Present

 Hie Exanut

170

ARTICLE 130 - WORK INVOLVING ELECTRICAL HAZARDS
N Table 130.5 (G) Selection of Arc-Rated Clothing and Other PPE When the Incident Energy Analysis Method Is Used

Incident energy exposures equal to $1.2 \mathrm{cal} / \mathrm{cm}^{2}$ up to $12 \mathrm{cal} / \mathrm{cm}^{2}$
Arc-rated clothing with an arc rating equal to or greater than the estimated incident energy
Long-sleeve shirt and pants or coverall or arc flash suit (SR)
Arc-rated face shield and arc--rated balaclava or arc flash suit hood (SRR)
Arc-rated outerwear (e.g., , acket, parka, rainwear, hard hat liner) (AN)
Arc-rated outerwear (e.g., jacket, parka, rainwear, hard hat liner) (AN)
Heavy-duty leather gloves, arc-rated gloves, or rubber insulating gloves wis
Heavy-duty leather gloves, arc-rated gloves, or rubber insulating gloves with leather protectors (SR)
Safery glasses or safery goggles (SR)
Hearing protection
Hearing protection
Leather footwear
Leather footwear
Incident energy exposures greater than $12 \mathrm{cal} / \mathrm{cm}^{2}$
Arc-rated clothing with an arc rating equal to or greater than the estimated incident energy
Long-sleeve shirt and pants or coverall or arc flash suit (SR)
Arc-rated arc flash suit hood
Arc-rated arc flash suit hood
Arc-rated outerwear (e.g., jacket, parka, rainwear, hard hat liner) (AN)
Arc-rated gloves or
Arc-rated gloves or rubber insulating gloves with leather protectors (SR $)^{\text {c }}$
Hard hat
Safety glasses or safety goggles (SR)
Hearing protection
Leather footwear \qquad

173

[^0]: More than 90% of electrical fatalities among US workers are due to electrical shock. - IAEI

[^1]: Feeder and branch-circuit conductors installed on docking facilities shall be provided with GFPE set to open at currents not exceeding, idQa, milliamperess with downstream GFPE coordination

[^2]: https://selinc.com/solutions/arc-flash-solutions/

